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Abstract— This work concentrates on a neural network-
based, prescribed time controller formulation for a class of
nonlinear systems having parametric uncertainty. The aim of
the controller is to ensure that the tracking error converges
to the origin within a user-defined prescribed time despite the
presence of bounded disturbances and parametric uncertainties
with controller/update law modularity. The stability of closed–
loop error system has been ensured via Lyapunov-based argu-
ments. Numerical simulations are conducted to illustrate the
feasibility of the proposed method.

I. INTRODUCTION

Prescribed time control aims to ensure that the track-
ing error converges to a small neighborhood of the origin
within a user-defined time. Recently this type of controller
formulations have gained the interest of researchers. To
name some, in [1], authors employed time-varying scaling
function that grows unbounded towards prescribed time and
designed a controller that stabilizes the system to reach
regulation at exactly pre-defined time. In [2], adaptive pre-
scribed time controller designed for event-based nonlinear
system contains time-varying uncertain parameters. In [3],
a fuzzy reinforcement learning approach is presented to
solve a prescribed-time optimal control problem for non-
linear systems while ensuring stability and convergence. In
[4], prescribed-time mean-square stabilization for nonlinear
systems with multiplicative noise is presented.

Significant research efforts have been dedicated, to de-
veloping prescribed time control strategies for robotic ap-
plications. In [5], a prescribed time controller designed for
first- and n-order systems and numerical simulations for the
two-link robot manipulator has been made. In [6], robust
prescribed time controller is presented for uncertain Euler-
Lagrange systems with time-varying disturbances. In [7], a
safety filter is presented for a 7-DOF robot manipulator based
on prescribed-time control, capable of obstacle avoidance.
In [8], prescribed time controller with velocity observer is
introduced for 3-dof dual-arm robot manipulator. In [9],
prescribed time control combined with fuzzy logic control
for robot manipulators with modeling uncertainties and un-
known control input direction. In [10], a robust nonlinear
model predictive controller was presented for mobile robots
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ensuring navigation within the prescribed time limits despite
constraints and disturbances.

Controller/update law modularity refers to the control law
ensures closed-loop stability independently of the update
law, provided the update law ensures boundedness. In [11],
adaptive position tracking controller for robot manipulators
is presented which achieves input-to-state stability with
controller/update law modularity. Similarly, in [12], the au-
thors achieve adaptive tracking and regulation control for
a wheeled mobile robot with update law modularity. In
[13], adaptive control of Euler–Lagrange system with robust
integral of the sign error based approach is presented to
achieve modularity in the update law. In [14], a modular
neural network-based modular adaptive control is presented
for trajectory tracking tasks.

In this study, neural network-based prescribed time con-
troller for a class of nonlinear systems contains additive dis-
turbances and modeling uncertainties with controller/update
law modularity presented. A time-varying scaling function
and single layer neural network structure are defined for
control design and the controller is designed independent
from update law to ensure modularity. Boundedness of the
proposed controller and error signals have been proven with
Lyapunov-based arguments. Finally, simulations have been
made to illustrate the efficacy of the suggested method using
different update laws to observe the boundedness of the
closed-loop system.

The rest of the paper is structured as follows: Section II
introduces the system model used in this paper. In Section
III, control design and in Section IV, stability analysis of the
proposed controller is presented. In Section V, simulation
results are shown and concluding remarks are given in
Section VI.

II. SYSTEM MODEL

We consider the class of nonlinear systems that are repre-
sented in the following form

ẏ = f (y, t) + d+ u (1)

where y (t) ∈ Rn is the state vector, f (y, t) ∈ Rn is
the nonlinear function of system state, d (t) ∈ Rn models
the additive disturbances and u (t) ∈ Rn is the control
input. In the subsequent development, the assumption that
the additive disturbances being a bounded function of time
will be utilized.



III. ERROR SYSTEM DEVELOPMENT & CONTROL
DESIGN

The main objective of the control design is to ensure that
the state vector y tracks the desired time-varying state vector
within a priori given prescribed time despite the presence of
modeling anomalies such as model uncertainties and additive
disturbances.

To initiate the control design, we introduce the state
tracking error e (t) ∈ Rn defined as follows

e ≜ y − yd (2)

where yd (t) ∈ Rn is the desired state vector. The objective
of ensuring tracking exactly at prescribed time will be
integrated into the controller design via the time-varying
scaling function µ (t) ∈ R and its inverse υ (t) ∈ R which
are defined as follows

µ ≜
T

T − t
, υ ≜

1

µ
=

T − t

T
, ∀t ∈ [0, T ) (3)

where T ∈ R is positive user defined prescribed time. Using
the defined scaling function, modified tracking error ep (t) ∈
Rn is defined as

ep ≜ µ2e. (4)

Taking the time derivative of (2) and substituting our system
model (1) into yields

ė = f + d+ u− ẏd (5)

and after adding and subtracting fd with fd (yd, t) ≜
f (y, t) |y=yd

to the right hand side of above equation yields

ė = fd + f̃ + d+ u− yd (6)

where f̃ is estimation error and it is defined as

f̃ = f − fd, f̃ ∈ Rn (7)

and following upper bound can be made using Mean Value
Theorem [15]

∥f̃∥ ≤ ρ (∥e∥) ∥e∥ (8)

where ρ is non-negative function. In the context of neural
network-based synthesis, fd is defined, corresponding to a
single-layer neural network structure as follows [16].

fd = WTσ (yd) + ϵ (yd) (9)

where W ∈ Rn×n, σ (yd) ∈ Rn, ϵ (yd) ∈ Rn are constant
weight matrix, activation function and functional reconstruc-
tion error, respectively. Substituting (9) into (6), we obtain
the following expression

ė = WTσ + ϵ+ f̃ + d+ u− ẏd (10)

Taking the time derivative of (4) and substituting (10), open
loop error term yields

ėp =
2

T
µ3e+ µ2

(
WTσ + ϵ+ f̃ + d+ u− ẏd

)
. (11)

The control input u designed in the following form

u = −kep + ẏd − ŴTσ − ka∥σ∥2ep (12)

where k ∈ R is to be designed control gain, ka ∈ R>0

is control gain and Ŵ ∈ Rn×n is estimate of the constant
weight matrix W . The proposed controller is designed to
be independent of the update law, enhancing its flexibility
and applicability to various update laws. It is only required
that the update law is bounded for t ∈ [0, T ) [11], [12].
Substituting control input into (11), the closed loop error
term can be obtain as

ėp =
2

T
µ3e+ µ2

(
f̃ + W̃Tσ − kep + ϵ+ d− ka∥σ∥2ep

)
(13)

where W̃ ∈ Rn×n is estimate error of weight matrix and it
is defined as follows

W̃ = W − Ŵ (14)

IV. STABILITY ANALYSIS

Theorem 1: The proposed control input (12) ensures
boundedness of all signals for t ∈ [0, T ) and converges
the tracking error to small neighborhood of origin exactly at
prescribed time for different bounded update laws provided
that the control gain k designed as follows

k = κ+ kn1
+ kn2

+
2

T
+ ρ (15)

where κ ∈ R>0 is an auxiliary control gain, kn1 , kn2 ∈ R>0

are a damping coefficients and ρ was previously introduced
in (8).

Proof: To proof the above theorem, we chose a non-
negative Lyapunov function as

V =
1

2
eTp ep (16)

and taking the time derivative of (16) and substituting closed
loop error term (13) yields

V̇ =
2

T
µ∥ep∥2 + µ2eTp f̃ + µ2eTp d+ µ2eTp ϵ− kµ2∥ep∥2

+µ2eTp W̃
Tσ − kaµ

2∥σ∥2∥ep∥2. (17)

Following bounds can be made using Young’s Inequality

eTp d ≤ kn1∥ep∥2 +
1

4kn1

∥d∥2 (18)

eTp ϵ ≤ kn2
∥ep∥2 +

1

4kn2

∥ϵ∥2 (19)

and the second line of (17) can be upper bounded as

epW̃
Tσ − ka∥σ∥2∥ep∥2

≤ ∥ep∥∥W̃∥i∞∥σ∥ − ka∥σ∥2∥ep∥2

≤ 1

4ka
∥W̃∥2i∞. (20)

Using (8), (18), (19), (20), (17) can be upper bounded as
follows.

V̇ ≤ 2

T
µ∥ep∥2 + ρ∥ep∥2 + kn1µ

2∥ep∥2 +
1

4kn1

µ2∥d∥2

+ kn2
µ2∥ep∥2 +

1

4kn2

µ2∥ϵ∥2 − kµ2∥ep∥2

+
1

4ka
µ2∥W̃∥2i∞ (21)



and using inverse scaling function defined in (3), (21) can
be rewritten as follows

V̇ ≤ −
(
k − kn1

− kn2
− 2

T
υ − ρυ2

)
µ2∥ep∥2

+
1

4ka
µ2∥W̃∥2i∞ +

1

4kn1

µ2∥d∥2

+
1

4kn2

µ2∥ϵ∥2 (22)

Observing from (3) that |υ (t) | ≤ 1 for t ∈ [0, T ) and using
the design of k in (15), the following upper bound can be
made for time derivative of Lyapunov function

V̇ ≤ −κµ2∥ep∥2 +
1

4ka
µ2∥W̃∥2i∞ +

1

4kn1

µ2∥d∥2

+
1

4kn2

µ2∥ϵ∥2. (23)

Using the Lemma 1 from [1], solution of the (23) can be
obtained as follows

V (t) ≤ exp{2κT (1− µ (t))}V (0) +
1

8κka
∥W̃∥2[0,t]

+
1

8κkn1

∥d∥2[0,t] +
1

8κkn2

∥ϵ∥2[0,t] (24)

∀t ∈ [0, T ) where | · |[0,t] := supτ∈[0,t] | · (τ)|. From (16),
an upper bound for the modified tracking error ep (t) can be
expressed as

∥ep (t) ∥ ≤ exp{κT (1− µ)}∥ep (0) ∥+
1√
4κka

∥W̃∥[0,t]

+
1√

4κkn1

∥d∥[0,t] +
1√

4κkn2

∥ϵ∥[0,t]. (25)

Making use of (4), tracking error e can be upper bounded
as follows

∥e (t) ∥ ≤υ2

[
exp{κT (1− µ)}∥ep (0) ∥+

1√
4κka

∥W̃∥[0,t]

+
1√

4κkn1

∥d∥[0,t] +
1√

4κkn2

∥ϵ∥[0,t]

]
. (26)

∀ t ∈ [0, T ). From these bounds it is clear that as the
prescribed time approaches tracking error e converges small
neighborhood of zero and it can be seen that all signals
remain bounded for t ∈ [0, T ).

V. SIMULATION RESULTS

To test the effectiveness of the proposed neural network-
based prescribed time controller, simulation studies were
conducted in MATLAB/Simulink with the system model
given in (1). The system characteristics and disturbances are
chosen as follows

f =

[
2y21 + 2

y1y2sin (t)

]
, d =

[
0.25cos (5t)
0.25cos (5t)

]
. (27)

where y =
[
y1 y2

]T
and initial condition of state vector

y was set as y (0) =
[
0.2 0.25

]T
. The desired state

vector yd is chosen as follows for all simulation studies.

yd =

[
(0.1 + 0.25t) sin (10t)
0.5 (1− exp (−5t))

]
. (28)

The control gains were selected as κ = 0.55, ka = 5, kn1 =
2.125, kn2 = 1.5 and non-negative function ρ was chosen
as ρ = ∥e∥+1. Additive white Gaussian noise with an SNR
value of 30 was added to y in all simulations studies.

For simulation studies, prescribed time was selected as
T = 1 sec. and a modification has been made for µ in the
form of µ = T

T−min{t,ξT} to avoid exceeding the limits of the
simulation [6]. In this way µ will still remain after t = ξT
where ξ ∈ [0, 1). For the simulation studies ξ = 0.99 was
chosen.

The activation function is selected in a smooth and differ-
entiable form as follows

σ =

[
tanh (yd1)
tanh (yd2

)

]
(29)

where yd =
[
yd1 yd2

]T
and three different update laws

used to evaluate the modularity of the proposed controller.

˙̂
W = ΓσeTp (30)
˙̂
W = ΓσeTp − kwŴ (31)
˙̂
W = ΓσeTp − kw∥ep∥Ŵ (32)

where Γ ∈ R2×2 identity matrix, kw ∈ R>0 is a constant
and it is selected as kw = 0.25. The initial condition of Ŵ
was chosen as Ŵ (0) = 02×2.

Figures 1-3 present the numerical simulation results cor-
responding to the update law in (30). Figures 1 and 2 show
actual and desired state vector and tracking error signals
respectively. It can be observed that tracking error converges
the origin as the prescribed time approaches and the control
objective is achieved exactly at t = T . Figure 3 shows the
control input signal.
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Fig. 1: y vs. yd
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Fig. 2: Tracking error e
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Fig. 3: Control input u

To test the proposed neural network-based prescribed time
controller under different bounded update laws simulation
was repeated. Table I shows the errors and control efforts
for (12) using the update laws (30), (31) and (32). It can be
observed that all update laws performed similarly and the
control objective is achieved for different update laws.

TABLE I: Comparisons

Controller
∫
|e1|

∫
|e2|

∫
|u1|

∫
|u2|

(12) with (30) 0.096 0.0469 2.58 0.2731
(12) with (31) 0.0961 0.0469 2.5799 0.2731
(12) with (32) 0.096 0.0469 2.5799 0.2731

VI. CONCLUSION

In this paper, a neural network-based prescribed time
controller with update modularity has been presented for a
class of nonlinear systems. The prescribed time controller
objective is achieved by defining a modified version of
the tracking error signal that corresponds to a time-varying
scaling prescribed time function. Boundedness of the close-
loop error terms and control input have been ensured via

Lyapunov-based argument. The control design and stability
analysis are made independent of the update law, making
the proposed controller modular for various bounded update
laws. The feasibility of the proposed controller is numerically
tested with different update laws, and it is observed that the
system remains stable under bounded update laws. Future
work will focus on the design of a multi-layer neural network
architecture and its application to MIMO systems such as
robotics, along with the experimental verification of the
proposed controller formulation.
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