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Abstract— This paper presents an adaptive kine-
matic control strategy for robotic manipulators, which
takes advantage of a concurrent learning-based ap-
proach to address kinematic uncertainties. Departing
from typical approaches that rely on position-level
inverse kinematics, the developed framework operates
directly in Cartesian space, thereby reducing compu-
tational complexity and mitigating singularity-related
issues. The control framework incorporates a concur-
rent learning-based adaptive update law, providing
precise end-effector trajectory tracking and real-time
identification of uncertain kinematic parameters un-
der interval excitation condition, which is less strin-
gent than persistent excitation. Stability analysis is
conducted using a Lyapunov-based framework which
proves the global exponential convergence of both
tracking and parameter estimation errors. Numerical
simulations validate the effectiveness of the devel-
oped approach, accurately demonstrating trajectory
tracking and identification of the uncertain kinematic
terms.

I. Introduction
The main control objective for robotic systems is

generally specified in the robot’s operational space, also
known as Cartesian space. While the reference trajectory
is typically formulated in Cartesian space, the dynamics
of the system with the control input is defined in the
joint space. As a result, the control input implementation
necessitates transforming the tracking control objective
to joint space and requiring the computation of inverse
kinematics at each iteration which present commonly
known challenges due to performing inverse kinematics
calculations at the position level.

For kinematically redundant robotic manipulators, the
redundancy problem arises from having an infinite set
of inverse kinematic solutions at position level [1], [2],
[3]. Despite complicating control design, redundancy can
be advantageous by utilizing joint motion within the Ja-
cobian matrix’s null-space, thus allowing redundant de-
grees of freedom (DOF) to address secondary objectives
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such as optimizing manipulability, avoiding joint limits,
preventing obstacles, minimizing impact forces, and re-
ducing potential energy. In [4], a kinematic controller
is proposed for kinematically redundant manipulators
to address multi-task objectives with varying priorities.
The work in [5] introduces a kinematic controller that
utilizes prescribed performance to address constraints in
joint positioning. In [6], a discrete-time kinematic control
strategy is introduced to guarantee the avoidance of
obstacles. [7] presents an approach that utilizes a filtered
inverse Jacobian matrix designed to overcome kinematic
singularities in redundant robotic manipulators, facilitat-
ing its implementation for the kinematic controller. The
kinematic controllers referenced in [4], [5], [6], [7] require
precise knowledge of the robot manipulators’ kinematic
configuration, which might not be feasible for some real-
time applications.

Moreover, parametric uncertainties in the robot’s kine-
matic and/or dynamic models can further complicate
the control design process. Various control methods have
been proposed to address uncertainties, reduce compu-
tational demands, and overcome numerical singularities,
thereby enhancing the system’s stability and improving
performance of the robotic system [8], [9]. Adaptive
control is commonly used to compensate for the effects
of uncertainties in the dynamics and kinematics of robot
manipulators and to ensure trajectory tracking [10]. The
work in [11] introduces an accelerated robust adaptive
control design to ensure the convergence of the tracking
error in a prescribed time and compensate the effects
of the uncertainties in the kinematic configuration of
the robotic manipulators. In numerous robotic tasks,
ensuring accurate tracking is critical, necessitating pre-
cise pseudo-inverse Jacobian matrix calculations that are
typically utilized in the formulation of kinematic control
[12]. Therefore, compensating the effects of the kinematic
uncertainties alone may not be adequate for enhanced ac-
curacy; identifying these parametric uncertainties is cru-
cial. Various adaptive control methodologies have con-
centrated on achieving trajectory tracking and concur-
rently identifying the precise values of the uncertainties
of the system model [13]. Composite adaptive controllers
are based on a single channel regressor that utilizes only
instantaneous data, which requires the fulfillment of the
persistent excitation (PE) condition [14]. Recent studies
introduced adaptive controllers for concurrent learning
[15] and composite learning [16] that use multi-channel
regressors, which require an interval excitation rather



than a PE condition. By integrating historical data with
real-time adaptation, concurrent learning and composite
learning-based adaptive controllers improve parameter
estimation accuracy, accelerate convergence, and lead
to improved tracking performance for uncertain systems
[17]. An integral-based concurrent learning adaptive con-
troller has been developed to incorporate recorded input-
output data into the update law to estimate uncertain
dynamical terms [18] that require the interval condition
milder than the PE condition. The work in [19] presents
an integral adaptive controller at the torque (dynamic)
level that ensures trajectory tracking for the end-effector
in Cartesian space and simultaneously addresses the
estimation of uncertainties in the system’s dynamics,
assuming known kinematic parameters, without neces-
sitating the persistent excitation condition.

In this paper, a novel integral concurrent-learning-
based kinematic controller at the velocity level is devel-
oped to ensure global exponential stability for both the
trajectory tracking error and the parameter estimation
error in the kinematic model of robot manipulators (e.g.,
link lengths, link twist angles, joint offsets, etc.), without
requiring any dynamic model information or the PE
condition. The developed concurrent-learning framework
employs multi-channel regressors that incorporate the
most informative historical and online data. The most
informative historical data are derived from the singu-
lar value maximization algorithm, similar to [20]. The
presented method enables accurate trajectory tracking
by incorporating precise pseudo-inverse Jacobian matrix
calculations, commonly used in kinematic control for-
mulations. A Lyapunov-based stability analysis is used
to ensure that both the task-space tracking error and
the parameter estimation error converge exponentially.
Subsequently, numerical simulations are conducted, and
the results demonstrate that both the estimation error
and the task tracking error converge exponentially, as
expected from the Lyapunov stability analysis.

The rest of the paper is outlined as follows. In Section
II, the kinematic formulation of the robot manipulator is
presented. In Section III and in Section IV, the controller
design process and the stability analysis are illustrated.
In Section V, simulation results are provided. Finally, in
Section VI, concluding remarks are given.

II. Kinematic Formulation
The forward kinematics of an n degree of free-

dom robot manipulator operating on an n dimensional
workspace is expressed as

x ≜ f (q) , (1)

where x : [t0, ∞) → Rn denotes the end-effector position
vector in Cartesian space, q : [t0, ∞) → Rn represents
the joint position vector in joint space, and the mapping
f : Rn → Rn specifies the forward kinematic model1.

1Since the number of degrees of freedom of the robot manipulator
is equal to the dimension of its task space, it is non-redundant [21].

The velocity kinematics is represented as

ẋ = J (q) q̇, (2)

where ẋ : [t0, ∞) → Rn represents the end-effector
velocity vector in Cartesian coordinates, q̇ : [t0, ∞) → Rn

denotes the joint velocity vector in joint coordinates, and
J (q) : Rn → Rn×n is the Jacobian matrix, expressed as
J (q) ≜ ∂f(q)

∂q .
Property 1: The Jacobian matrix can be expressed in

a linear parameterization form as [22]

J (q) ζ = W (q, ζ) ϕ, (3)

where W : Rn × Rn → Rn×p represents the regressor
matrix formed by known/measurable quantities, while
ϕ ∈ Rp denotes the vector containing constant kinematic
parameters, such as link lengths, link twist angles, and
joint offsets [23].

Assumption 1: All the kinematic singularities are as-
sumed to be avoided a priori. That is, inverse of the
Jacobian matrix J is considered to exist for all possible
q [24].

Assumption 2: The forward kinematics function f and
the Jacobian matrix J remain bounded provided that the
joint position vector q is bounded [25]2.

III. Control Development
The control objective is to design a kinematic con-

troller to ensure that the end effector position vector
x tracks a given desired trajectory xd : [t0, ∞) → Rn

despite the kinematic model parameter vector ϕ in (3)
being uncertain. Additionally, identifying the uncertain
kinematic model parameter vector is also aimed. Specif-
ically, the joint velocity vector is considered as the
control input τ(t) ≜ q̇ ∈ Rn and an adaptive control
approach is to be pursued to ensure both the tracking
of the end effector and the identification of the vector of
parameters of the kinematic model. Subsequent control
design is based on the availability of q and also x which
is considered to be obtained through alternative sensing
techniques, as the forward kinematics formulation in (1)
cannot be used to construct x due to the presence of
parametric uncertainties. The desired task space trajec-
tory is considered to be sufficiently smooth in the sense
that xd and ẋd are bounded functions of time.

To quantify the control goal, the task space tracking
error signal e(t) ∈ Rn is defined as

e ≜ xd − x. (4)

By setting τ = q̇ in equation (2), the time derivative of
(4) is derived as follows

ė = ẋd − Jτ. (5)
In accordance with the subsequent stability assess-

ment, the control signal is designed as

τ = Ĵ−1 (ẋd + κee) , (6)
2It is noted that Assumption 1 and Assumption 2 are standard

assumptions in task space control of robot manipulators [25], [26].



where Ĵ(q) ∈ Rn×n represents the estimated Jacobian
matrix, and κe ∈ Rn×n is a tunable, constant, positive
definite, diagonal gain matrix. By applying Property 1
and inserting the estimated kinematic parameters into
the Jacobian matrix, following expression can be ob-
tained:

Ĵ (q) τ = J (q) τ |ϕ=ϕ̂= W (q, τ) ϕ̂, (7)

where ϕ̂ : [t0, ∞) → Rp denotes the vector of estimated
uncertain parameters and W was previously introduced
in (3). Adding and subtracting Ĵτ in (5), and then
substituting (6) into (5), yields the closed-loop dynamics
for e as

ė = −κee − J̃τ, (8)

with J̃(q) ≜ J − Ĵ ∈ Rn×n that satisfies the subsequent
expression

J̃τ = W (q, τ) ϕ̃. (9)

In (9), ϕ̃(t) ∈ Rp is the mismatch between the uncertain
parameter vector and its estimation and is defined as

ϕ̃ ≜ ϕ − ϕ̂. (10)

The adaptive update law is designed as3

˙̂
ϕ = −ΓW T e − κclΓ

N∑
i=1

WT
i

(
Xi − Wiϕ̂

)
, (11)

with Γ ∈ Rp×p being a tunable, constant, positive
definite, diagonal gain matrix, and N ∈ Z>0 denoting the
quantity of historical data points in memory. Also in (11),
the expressions Xi ≜ X (ti) ∈ Rn and Wi ≜ W (ti) ∈
Rn×p represent the values of the following expressions at
the time point ti ∈ [t0, t]

X ≜
∫ t

max(t−∆t,0)
ẋ (σ) dσ, (12)

W ≜
∫ t

max(t−∆t,0)
W (q (σ) , τ (σ)) dσ, (13)

where ∆t ∈ R is a constant time step that is used to
adjust the window of integration. Using (12) and (13),
the update law ˙̂

ϕ can be rewritten as follows

˙̂
ϕ = −ΓW T e − κclΓ

N∑
i=1

WT
i Wiϕ̃. (14)

IV. Stability Analysis

Theorem 1: The controller proposed in (6), in combi-
nation with the novel adaptation law designed in (11),
guarantees the globally exponential stability (GES) of

3It is noted that, the proposed adaptive controller in (6) requires
the estimated Jacobian matrix Ĵ to be invertible, thus the adaptive
update law may be considered to be utilized along with a projection
algorithm to ensure that the estimates of the kinematic parameters
remain within a priori known bounds.

the end effector tracking and parameter estimation er-
rors, such that

∥s(t)∥ ≤

√
λ̄V

λV

∥s(T )∥ exp
(

− α

2λ̄V

(t − T )
)

, (15)

for all t ∈ [T, +∞), where s(t) ≜
[
eT ϕ̃T

]
∈ Rn+p, and

λ̄V , λV , and α are positive constants.
Proof: Let D ⊂ Rn+p be a domain containing

the origin. Consider V (s) : D → R as a Lyapunov
function candidate that is positive definite, continuously
differentiable, and radially unbounded, expressed as

V ≜
1
2eT e + 1

2 ϕ̃T Γ−1ϕ̃. (16)

Following inequalities can be established for the Lya-
punov function defined above

λV ∥s∥2 ≤ V (s) ≤ λ̄V ∥s∥2, (17)

where λV ≜ 1
2 min{1, λΓ} and λ̄V ≜ 1

2 max{1, λ̄Γ}. Here,
λΓ and λ̄Γ ∈ R denote the minimum and maximum
eigenvalues of Γ−1, respectively.

The time derivative of (16) is obtained as

V̇ = eT ė + ϕ̃T Γ−1 ˙̃ϕ. (18)

By substituting (5) for the dynamics of e and (14) along
with the time derivative of (10) for the dynamics of ϕ̃,
and then applying Property 1 along with straightforward
simplifications, we obtain the following result

V̇ = −eT κee − κclϕ̃
T

(
N∑

i=1
WT

i Wi

)
ϕ̃. (19)

Since the history stack is assumed to lack sufficient
richness during the initial time period t ∈ [t0, T ), the
summation

∑N
i=1 WT

i Wi remains positive semi-definite,
ensuring that the right hand side of (19) is upper
bounded as

V̇ ≤ −eT κee ≤ −λκe
∥e∥2, (20)

where λκe
∈ R denotes the minimum eigenvalue of κe.

Furthermore, the right hand side of (20) can be upper
bounded as

V̇ ≤ −γ(s), ∀t ∈ [t0, T ). (21)

where γ : Rn+p → R≥0 is a continuous, positive, semi-
definite function defined as γ ≜ min λκe

∥e∥2. Using The-
orem 8.4 from [27], the inequality in (21) can be employed
to conclude that V is bounded and, consequently, s is
uniformly bounded. Further analysis can be conducted to
establish the global boundedness of the remaining closed-
loop signals. Since the controller in (6) accompanied
by the adaptive update law in (11) ensures that all
signals remain bounded, the occurrence of finite escape
phenomena during ∀t ∈ [t0, T ) is prevented. Moreover,
Barbalat’s Lemma [27] can be applied to demonstrate
the asymptotic stability of the task space tracking error
e.



The preceding analysis was conducted under the as-
sumption that the history stack was not rich enough to
satisfy the condition λmin

{∑N
i=1 WT

i Wi

}
≥ λW during

t ∈ [t0, T ) for some positive constant λW . However, after
some time T , the history stack becomes sufficiently rich
to meet the condition λmin

{∑N
i=1 WT

i Wi

}
≥ λW . Thus,

for all t ≥ T ,
∑N

i=1 WT
i Wi is positive definite, and the

right-hand side of (19) can now be upper bounded as

V̇ ≤ −λκe
∥e∥2 − κclλW∥ϕ̃∥2. (22)

In lieu of (17), the right hand side of (22) can further be
upper bounded as

V̇ ≤ α

λ̄V

V, ∀t ∈ [T, ∞), (23)

where α ≜ min{λκe
, κclλW}. This differential inequality

can be solved to obtain the following result

V (t) ≤ V (T ) exp
(

− α

λ̄V

(t − T )
)

, ∀t ∈ [T, ∞), (24)

which, in accordance with (17), leads to the upper bound
specified in (15).

V. Numerical Simulations
A numerical simulation is conducted to demonstrate

the effectiveness of the kinematic controller expressed in
(6), in conjunction with the integral concurrent learning
update law specified in (11), for a planar, two link revo-
lute joint robot arm. The forward kinematic formulation
for a two link revolute robot arm is expressed as

f (q) =
[

L1c1 + L2c12
L1s1 + L2s12

]
,

where L1, L2 ∈ R represent uncertain link lengths
and c1 ≜ cos (q1), s1 ≜ sin (q1), c12 ≜ cos (q1 + q2),
s12 ≜ sin (q1 + q2). For numerical simulation, the two
link revolute robot arm is configured with link lengths
of L1 = 0.6 m and L2 = 0.4 m. The Jacobian matrix
J = ∂f(q)

∂q ∈ R2×2 is obtained as

J =
[

−L1s1 − L2s12 −L2s12
L1c1 + L2c12 L2c12

]
.

The expression J (q) τ can be reformulated into a linearly
parameterized form as

J (q) τ = W (q, τ) ϕ,

in which ϕ = [L1 L2]T ∈ R2 and the regression matrix
W (q, τ) ∈ R2×2 is derived as

W (q, τ) =
[

−s1τ1 −s12 (τ1 + τ2)
c1τ1 c12 (τ1 + τ2)

]
.

The desired task space trajectory was selected as

xd =
[

0.45+0.1(1−exp (−0.5t))cos (πt)
0.45+0.1(1−exp (−0.5t))sin (πt)

]
m.

The joint positions were initially set to q (0) =
[−0.5 0.5]T rad, resulting in x (0) = [0.9265 − 0.2877]T

m. Initially, the update law is set to ϕ̂(0) = [0.2 0.2]T .
The control gain matrix was adjusted as κe =
diag{1.5, 1.5}. The adaptation gain matrix is configured
as Γ = diag{0.5, 0.5}, with the learning gain adjusted
to κcl = 1 × 104. The number of historical data points
stored was chosen N = 20.

The results of the numerical simulation are depicted
in Figures 1-3. Specifically, Figure 1 illustrates the task
space tracking error e. The results in Figure 1 confirm
that the proposed concurrent learning-based adaptive
kinematic controller ensures exponential tracking, even
with parametric kinematic uncertainties. The designed
control input is presented in Figure 2. In Figure 3,
the estimations of the kinematic model parameters are
depicted. Figure 4 illustrates the parameter estimate
errors ϕ̃(t), highlighting their convergence towards their
respective actual values.
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VI. Conclusions

This study introduced a concurrent learning-based
adaptive kinematic control strategy for robotic manip-
ulators, effectively eliminating the need for inverse kine-
matics computations in position control. The presented
method ensures end-effector tracking while simultane-
ously identifying uncertain kinematic parameters to im-
prove tracking accuracy. Lyapunov-based stability anal-
ysis is used to guarantee global exponential convergence
of tracking and estimation errors, which was further vali-
dated through numerical simulations. The results demon-
strate the efficacy of the proposed approach in improv-
ing tracking performance under kinematic uncertainties.
Future research directions may include extending this
framework for redundant manipulators with the addition
of subtask objectives and experimental validation on
physical robotic systems.
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