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Abstract— This paper presents a novel control strategy for
brushless DC (BLDC) motor-driven, multi-degree-of-freedom
robot manipulators, addressing the challenges posed by the
highly nonlinear and coupled dynamics of the motor and
manipulator. The proposed controller leverages the universal
approximation property of Legendre polynomials, a class of
orthogonal functions, to effectively compensate for modeling
uncertainties and system nonlinearities. A rigorous stability
analysis is conducted using Lyapunov-based methods, guaran-
teeing semi-global uniform ultimate boundedness of the closed-
loop system. Experimental studies on an in-house developed
BLDC-driven robotic device validate the effectiveness of the
proposed controller, demonstrating its capability to achieve
precise trajectory tracking with robust performance.

I. INTRODUCTION

The control of robot manipulators has been a central
focus in robotics research due to its wide-ranging appli-
cations in industrial automation [1], medical robotics [2],
and autonomous systems [3]. Among the various types of
actuators used in robotic systems, brushless direct current
(BLDC) motors have gained significant attention due to their
high efficiency, compact design, and precise torque control
capabilities [4], [5]. However, the integration of BLDC
motors into multiple degrees of freedom (dof) robot manipu-
lators introduces complex dynamics, including nonlinearities
and coupling effects, which pose significant challenges for
control design and stability analysis.

Traditional control strategies for robot manipulators often
rely on simplified models that neglect the intricate dynamics
of the actuators. In such approaches, controllers are typically
designed at the torque level, disregarding the complexities
of actuator behavior [6], [7], [8], [9]. While some studies
do consider actuator dynamics, these approaches commonly
rely on the assumption that joint torque varies linearly
with the applied control signal, which may not accurately
capture the true nonlinearities of the system [10], [11]. While
these methods have demonstrated satisfactory performance in
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certain scenarios, they may fall short in achieving robust and
precise control when the dynamics of the BLDC motor are
coupled with the manipulator. This limitation underscores the
need for advanced control techniques that explicitly account
for the combined dynamics of the motor and the manipulator
in both control design and stability analysis.

Various control strategies have been explored for robotic
systems utilizing BLDC motors as joint actuators, including
sliding mode control [12], proportional-integral-derivative
control [13], high-frequency robust control [14], and adap-
tive control [15]. In recent years, orthogonal functions
and polynomial-based approaches have gained prominence
as powerful tools for control system design [16]. These
methods leverage the mathematical properties of orthogonal
functions, such as Legendre polynomials, to approximate
complex nonlinear systems and derive control laws with
guaranteed stability and performance [17]. The advantages of
orthogonal functions include computational efficiency, ease
of implementation, and robustness to system uncertainties
[18]. Additionally, unlike traditional adaptive methods, they
eliminate the need for regressor calculations, simplifying the
control design. Notably, the work in [19] demonstrated the
effectiveness of orthogonal functions in control design for
robotic arms actuated by permanent magnet synchronous
motors, providing a strong theoretical foundation for further
research.

In this paper, we propose a novel control strategy for
BLDC motor-driven multiple dof robot manipulators. Unlike
most existing approaches, the proposed controller explicitly
accounts for the coupled dynamics of the BLDC motor and
the manipulator, providing a unified framework for control
design and stability analysis. The key innovation lies in
leveraging the orthogonal functions theorem and Legen-
dre polynomials to derive a backstepping control law that
successfully handles the interaction and nonlinear behavior
inherent in the dynamic models of the mechanical and
electrical components. A Lyapunov-based stability analysis
guarantees that the closed-loop system remains semi-globally
uniformly ultimately bounded with the proposed control
strategy. The effectiveness of the proposed design is validated
through experimental tests conducted on a custom-built two
dof robotic arm.

The key contributions of this study can be summarized as
follows:

• A control law is derived using Legendre polynomials,
ensuring stability and robustness in the presence of both
mechanical and electrical modeling uncertainties.

• A rigorous stability analysis is conducted using



Lyapunov-based methods, demonstrating the semi-
global uniform ultimate boundedness of the closed-loop
system.

• The designed controller is validated through experimen-
tal studies, highlighting its effectiveness in achieving
precise trajectory tracking. By exploiting the orthog-
onality property, the controller significantly enhances
tracking accuracy.

The organization of the paper is outlined as follows.
Section II introduces the system model and preliminaries.
Section III is dedicated to the error system and control de-
velopment, leveraging the universal approximation property
of orthogonal basis functions. In Section IV, we perform a
stability analysis based on Lyapunov techniques to guaran-
tee uniform ultimate boundedness. Section V presents the
experimental results that validate our theoretical findings,
and Section VI finalizes the study by highlighting the main
findings and suggesting future research.

II. SYSTEM MODEL AND PRELIMINARIES

The dynamic and electrical behavior of an n dof robotic
arm actuated by brushless DC motors is characterized by the
following

M (q) q̈ + Vm (q, q̇) q̇ +G (q) + Fdq̇ = τd, (1)

La
dIa
dt

+RIa +NpLbIB q̇ +KT2q̇ = Va, (2)

Lb
dIb
dt

+RIb −NpLaIAq̇ = Vb, (3)

where q(t), q̇(t), q̈(t) ∈ Rn are the position, velocity, and
acceleration vectors of the manipulator joints, respectively,
M (q) ∈ Rn×n represents the inertia matrix, Vm(q, q̇) ∈
Rn×n models centripetal and Coriolis effects, G(q) ∈ Rn

demonstrates gravitational terms, Fd ∈ Rn×n defines viscous
friction matrix. The term τd(t) ∈ Rn is expressed using the
relation τd ≜ (KT1IB +KT2)Ia, with KT1, KT2 ∈ Rn×n

denote torque transmission constants, Ia(t), Ib(t) ∈ Rn

are phase currents, with IA, IB(t) ∈ Rn×n denoting their
corresponding diagonal matrix representations. Armature in-
ductances are given by La, Lb ∈ Rn×n, while R ∈ Rn×n

corresponds to the resistance matrices. Np ∈ Rn×n holds the
values representing the count of pole pairs in the permanent
magnet motors. Control inputs are provided through phase
voltages Va(t), Vb(t) ∈ Rn.

The dynamical terms in (1) satisfy the following standard
properties that are fundamental to the analysis and controller
design.

Property 1: The inertia matrix M(q) possesses symmetry
and positive definiteness, and adheres to the following set of
inequalities [20]

w1In ≤ M(q) ≤ w2In, (4)

where w1, w2 ∈ R denote positive constants. In ∈ Rn×n

defines the standard identity matrix.
Property 2: M(q) and Vm(q, q̇) exhibit a skew-symmetric

relationship and satisfy the condition that [20]

zT
(
Ṁ(q)− 2Vm(q, q̇)

)
z = 0, ∀z ∈ Rn. (5)

III. ERROR SYSTEM AND CONTROL DEVELOPMENT

This work proposes a control methodology aimed at
enabling precise tracking of joint trajectories in robotic
manipulators actuated by BLDC motors. Designing such a
controller poses significant challenges due to the inherent
uncertainties in both mechanical and electrical subsystems.
A full state feedback mechanism is adopted under the as-
sumption that joint positions, velocities, and phase currents
are all measurable and available for control.

The joint position tracking objective is mathematically
formulated by defining the tracking error signal e(t) ∈ Rn

as
e ≜ qd − q, (6)

where qd(t) ∈ Rn denotes the desired trajectory, along with
its first three time derivatives, is assumed to be bounded to
allow practical controller design. An auxiliary error like term
r(t) ∈ Rn is given by the equation

r ≜ ė+Kee, (7)

where Ke ∈ Rn×n refers to the control gain matrix, which
is both diagonal and positive definite. By differentiating
equation (7) with respect to time, pre-multiplying by M(q),
and utilizing the dynamics from (1), we derive the following
compact representation for the open loop error dynamics

Mṙ = S − Vmr −KT1IBIa −KT2Ia, (8)

where S(q, qd, q̇, q̇d, q̈d) ∈ Rn contains modeling uncertain-
ties and can be expressed as

S ≜ M(q) (q̈d +Keė)+Vm (q, q̇) (q̇d +Kee)+G(q)+Fdq̇.
(9)

The dynamics of Ia can be obtained via utilizing the
backstepping procedure; therefore, to facilitate backstepping
control, we define ηa(t) ∈ Rn as

ηa ≜ Iac − Ia, (10)

where Iac(t) ∈ Rn acts as a virtual control law within the
structure of the backstepping approach. Inserting (10) into
(8), yields the updated form of the equation

Mṙ = S̃+Sd−Vmr−KT1IBIa+KT2ηa−KT2Iac, (11)

where S̃(t) ≜ S − Sd ∈ Rn, and Sd (qd, q̇d, q̈d) ∈ Rn is
obtained via Sd(t) ≜ S|q=qd,q̇=q̇d . The norm of S̃ can be
upper bounded as given below∥∥∥S̃∥∥∥ ≤ (ϕ1 + ϕ2 ∥e∥) ∥e∥+ (ϕ3 + ϕ4 ∥e∥) ∥r∥ (12)

where ϕ1, ϕ2, ϕ3, and ϕ4 ∈ R define positive bounding
constants.

Property 3: By leveraging the universal approximation
property of orthogonal basis functions, the term Sd can be
expressed as

Sd ≜ φdpd + ϵd, (13)

where φd(t) ∈ Rn×nd denotes the Legendre polynomial-
based orthogonal basis function matrix, with nd = npd

·
nsd , in which npd

∈ R denotes the degree of Legendre



polynomial, while nsd ∈ R corresponds to the number of
evenly spaced sample points within the interval [−1,+1],
ϵd(t) ∈ Rn is the truncation error introduced by the finite-
term approximation, and pd ∈ Rnd represents the vector
of unknown Legendre coefficients. For further details on
the universal approximation property of orthogonal basis
functions, refer to [19].

Based on open loop error dynamics provided in (11), along
with the derived stability conditions, the virtual controller
Iac(t) is formulated as follows

Iac = K̄−1
T2

(
Krr + (ka1 + ka2) ∥e∥2 r + e+ φdp̂d

)
, (14)

where K̄T2 ∈ Rn×n defines the nominal value of the
uncertain torque transmission matrix KT2, Kr ∈ Rn×n is
represented as a diagonal matrix with strictly positive entries,
serving as the control gain., ka1, ka2 ∈ R are positive control
gains, and p̂d ∈ Rnd represents the estimate of unknown
Legendre coefficients vector which is updated according to

˙̂pd ≜ Γdφ
T
d r, (15)

where Γd ∈ Rnd×nd denotes a diagonal and symmetric
matrix with positive definiteness, used as the adaptation gain.

By inserting equations (13) and (14) into (11), the closed
loop error dynamics of r(t) can be reached as follows

Mṙ = S̃ − φdp̃d + ϵd − Vmr −KT1IBIa + K̄T2ηa

+K̃T2Ia −Krr − (ka1 + ka2) ∥e∥2 r − e, (16)

where p̃d(t) ≜ p̂d−pd ∈ Rnd defines the estimation error of
the Legendre coefficients, and K̃T2 ≜ K̄T2 −KT2 ∈ Rn×n

represents the discrepancy between the actual and nominal
values of the unknown torque transmission constant KT2.
The inequality

∥∥∥K̃T2Ia

∥∥∥ ≤ ρ ∥ηa∥ holds, with ρ(t) ∈ R
representing a time–varying positive bound.

The dynamics of ηa can be derived by taking the time
derivative of (10), pre-multiplying the resulting expression
by La, and substituting the electrical dynamics from (2) into
the resulting expression, to yield

Laη̇a = Se − Va, (17)

where Se(t) ∈ Rn represents the lumped uncertainty in
electrical dynamics and is defined as

Se ≜ La
dIac
dt

+RIa +NpLbIB q̇ +KT2q̇. (18)

Utilizing the universal approximation property of orthogonal
basis functions as stated in Property 3, the term Se can be
rewritten as follows

Se ≜ φepe + ϵe, (19)

where φe(t) ∈ Rn×ne is the Legendre polynomial-based
orthogonal basis function matrix, with ne = npe

· nse , in
which npe

∈ R denotes the degree of Legendre polynomial
and nse ∈ R is the number of evenly spaced sample
points within the interval [−1,+1], ϵe(t) ∈ Rn contains the
truncation error introduced by the finite-term approximation,
and pe ∈ Rne denotes the vector of unknown Legendre

coefficients. The adaptation law for the estimate of pe, shown
with p̂e ∈ Rne is designed as

˙̂pe ≜ Γeφ
T
e ηa, (20)

where Γe ∈ Rne×ne represents a diagonal and symmetric
matrix with positive definiteness, used as the adaptation gain.

The phase voltage Va (i.e., control input) is designed as
follows

Va = φep̂e +Kaηa + K̄T2r + knρ
2ηa, (21)

where Ka ∈ Rn×n defines a positive definite, diagonal gain
matrix, while kn ∈ R denotes a scalar control gain. Inserting
(19) and (21) into (17), the closed loop dynamics of ηa(t)
yields the following

Laη̇a = −φep̃e + ϵa −Kaηa − K̄T2r − knρ
2ηa (22)

where p̃e(t) ≜ p̂e− pe ∈ Rne defines the estimation error of
the Legendre coefficients.

The open loop dynamics of Ib can be given by the
following expression

Lb
dIb
dt

= Sbθb + Vb +KT1IAr, (23)

where Sb(Ia, Ib, q̇, r) ∈ Rn×nb represents known regressor
matrix, and θb ∈ Rnb defines unknown parameter vector,
both of which are obtained from

Sbθb ≜ −RIb +NpLaIAq̇ −KT1IAr. (24)

The phase voltage Vb (i.e., control input) is designed as

Vb ≜ −Sbθ̂b −KbIb, (25)

where θ̂b(t) ∈ Rnb is the estimation of the uncertain
parameter vector θb that is updated according to

˙̂
θb = ΓbS

T
b Ib, (26)

where Γb ∈ Rnb×nb is defined as a diagonal adaptation gain
matrix that is symmetric and positive definite. It should be
noted that to ensure the boundedness of parameter estima-
tions a projection operator can be used [21]. By applying
equations (24) and (25) to (23), we can reach the closed
loop dynamics of Ib as follows

Lb
dIb
dt

= −Sbθ̃b −KbIb +KT1IAr (27)

where θ̃b(t) ≜ θ̂b−θb ∈ Rnb defines the parameter estimation
error. We now proceed with the stability analysis.

IV. STABILITY ANALYSIS

Theorem 1: The phase voltages designed in (21), (25), and
the adaptation laws designed in (15), (20), and (26) ensure
that all signals remain bounded during closed loop operation
and establish the semi-global uniform ultimate boundedness



[22] of the tracking error, assuming the controller gains are
selected to satisfy the following conditions

λmin(Ke) > κe +
1

4δ
+

ϕ2
2

4ka1
(28)

λmin(Kr) > κr +
1

4kn
+ δϕ2

1 + ϕ3 +
ϕ4

4ka2
+ δd (29)

λmin(Ka) > κa + δe (30)

where κe, κr, κa ∈ R represent positive control gains, δ, δd,
δe ∈ R are positive damping constants.

Proof: As part of the proof for Theorem 1, a non-
negative function V (e, r, ηa, Ib, p̃d, p̃e, θ̃b) ∈ R is introduced
with the following structure

V ≜
1

2
eT e+

1

2
rTMr +

1

2
ηTa Laηa +

1

2
ITb LbIb

+
1

2
p̃Td Γ

−1
d p̃d +

1

2
p̃Te Γ

−1
e p̃e +

1

2
θ̃Tb Γ

−1
b θ̃b. (31)

The expression in (31) can be upper and lower bounded as

γ1 ∥s∥2 ≤ V ≤ γ2 ∥s∥2 + ξ, (32)

where s(t) ≜ [eT , rT , ηTa , I
T
b ]

T ∈ R4n is the combined
error vector, and γ1, γ2 ∈ R are used to represent positive
bounding constants defined as

γ1 ≜
1

2
min{1,m1, λmin (La) , λmin (Lb)}, (33)

γ2 ≜
1

2
max{1,m2, λmax (La) , λmax (Lb)}, (34)

ξ ≜
1

2
λmax(Γ

−1
d )¯̃p2d +

1

2
λmax(Γ

−1
e )¯̃p2e

+
1

2
λmax(Γ

−1
b )

¯̃
θ2b , (35)

in which ¯̃pd, ¯̃pe, ¯̃θb ∈ R denote positive constants that satisfy
∥p̃d∥ ≤ ¯̃pd, ∥p̃e∥ ≤ ¯̃pe, and

∥∥∥θ̃b∥∥∥ ≤ ¯̃
θb, and λmin(·),

λmax(·) denote the smallest and biggest eigenvalues of a
square matrix, respectively.

After substituting the definition in (7) for ė, the closed-
loop dynamics in (16), (22), (27), and (15), (20), (26) into
the time derivative of (31), we obtain

V̇ = −eTKee+ rT S̃ + rT K̃T2Ia − rTφdp̃d + rT ϵd

−rTKrr − (ka1 + ka2) ∥e∥2 ∥r∥2 − ηTa φep̃e

+ηTa ϵe − ηTa Kaηa − ηTa knρ
2ηa − ITb Sbθ̃b

−ITb KbIb + p̃Td φ
T
d r + p̃Te φ

T
e ηa + θ̃Tb S

T
b Ib. (36)

By reorganizing the terms and applying the square comple-
tion method, along with the upper bound on

∥∥∥S̃∥∥∥ provided
in (12), we obtain the following upper bound for the right

hand side of (36) as

V̇ ≤ −
(
λmin(Ke)−

1

4δ
− ϕ2

2

4ka1

)
∥e∥2

−
(
λmin(Kr)−

1

4kn
− δϕ2

1 − ϕ3

− ϕ4

4ka2
− δd

)
∥r∥2 − (λmin(Ka)− δe) ∥ηa∥2

−λmin(Kb) ∥Ib∥2 +
ϵ̄2d
4δd

+
ϵ̄2e
4δe

, (37)

where Young’s inequality [23] is applied in the following
forms: ∥r∥

∥∥∥S̃∥∥∥ − (ka1 + ka2) ∥e∥2 ∥r∥2 ≤ δϕ2
1 ∥r∥

2
+

ϕ2
2

4ka1
∥e∥2+ϕ3 ∥r∥2+ ϕ2

4

4ka2
∥r∥2+ 1

4δ ∥e∥
2, rT ϵd ≤ ∥r∥ ϵ̄d ≤

ϵ̄2d
4δd

+ δd ∥r∥2, −rT
∥∥∥K̃T2Ia

∥∥∥− knρ
2 ∥ηa∥2 ≤ ρ ∥ηa∥ ∥r∥ −

knρ
2 ∥ηa∥2 ≤ 1

4kn
∥r∥2, and ηTa ϵe ≤ ∥ηa∥ ϵ̄e ≤ ϵ̄2e

4δe
+

δe ∥ηa∥2. By utilizing the gain conditions in (28), (29), and
(30), we can obtain further upper-bound for the right-hand
side of (37) as follows

V̇ ≤ −γ3 ∥s∥2 + ϵ, (38)

where γ3, ϵ ∈ R denote positive constants are defined as

γ3 ≜ min{κe, κr, κa, λmin(Kb)}, (39)

ϵ ≜
ϵ̄2d
4δd

+
ϵ̄2e
4δe

. (40)

The closed-loop signal boundedness is confirmed through
standard signal analysis based on the results in (31) and (38).
Moreover, the solution to the differential inequality obtained
after substituting (32) into (38), leads to the conclusion
that the tracking error satisfies semi-global uniform ultimate
boundedness.

V. EXPERIMENTAL RESULTS

Experimental tests were carried out on a two dof robotic
manipulator developed in a laboratory setting, as illus-
trated in Figure 1. To actuate the joints of the manipu-
lator, Hobbywing-X8 type BLDC motors were employed,
selected for their suitability in position-based motion control
applications due to their torque speed characteristics. The
rotational motion of the motors is transmitted to the robot
joints via a planetary gearbox with an 8 : 1 reduction ratio.
High-resolution magnetic encoders (AS5047) are utilized
to measure the angular motion of each joint. Furthermore,
the mathematical model of the BLDC motors incorporates
the Park/Clarke transformations, as described in (2) and
(3). To accurately capture the motor dynamics, the inverse
Park/Clarke transformation of phase currents and the forward
transformation of applied voltages must be executed at high
frequencies. To achieve this, each motor is equipped with
a dedicated local driver (STM32F303RE and IHM-08M1),
while the main control algorithm is executed on a host
computer via an NI PCIe-6351 data acquisition card. The
control loop and data communication between the host
computer and the local motor drivers are maintained at a



Fig. 1. Experimental setup: 2 dof robotic arm actuated by BLDC motors.

frequency of 1 kHz, while the local drivers function at 16
kHz.

At the start of the experiment, the manipulator was posi-
tioned at rest with initial joint positions q(0) = [0, 0]

T
[rad],

and the desired trajectory was defined as follows

qd (t) = 0.1+

[
π
4

(
1− exp{−0.01t3}

)
sin(0.3t)

π
4

(
−1 + exp{−0.01t3}

)
cos(0.3t)

]
[rad].

(41)
Control parameters were set to the following values Kr =

diag{35, 34}, Ke = diag{17, 15}, Ka = diag{2.1, 2},
Kb = diag{0.4, 0.4}, ka1 + ka2 = 15, kn = 1, ρ = 0.3,
Γd = 0.5, Γe = 0.2, and Γb = diag{0.9, 0.09, 0.9, 0.09}.
The degrees of Legendre polynomials were truncated at
npd

= npe
= 5, with nsd = nse = 100 number of

evenly spaced sample points within the interval [−1,+1]. For
adaptive parameter estimation nb = 4. The nominal value of
the unknown torque transmission constant was specified as
K̄T2 = diag{2.5, 2.2}.

A detailed presentation of the experimental outcomes is
provided in Figures 2-5. The joint position tracking error
e(t) is shown in Figure 2 while in Figure 3, the actual joint
positions and the desired trajectories are demonstrated. From
Figures 2 and 3, it can be seen that the actual joint trajectories
closely follow the desired trajectories as the tracking errors
for both joints converge to a small neighborhood of zero.
Figures 4 and 5 illustrate the control inputs Va and Vb

for both joints. The obtained practical results highlight the
performance of the proposed controller in achieving precise
tracking for robotic manipulators driven by BLDC motors.

VI. CONCLUSIONS

This study presented a novel control framework that
leveraged the orthogonality of Legendre polynomials to ad-
dress mechanical-electrical uncertainties in BLDC-actuated
robot arms. By explicitly incorporating actuator dynamics
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and employing the backstepping approach, the proposed
controller effectively managed the coupled and nonlinear
dynamics of such systems. Unlike many existing studies that
relied on direct torque control and often neglected actuator
dynamics, our approach provided a more comprehensive
solution. Rigorous Lyapunov-based stability analysis con-
firmed the semi-global uniform ultimate boundedness of the
closed-loop system, while experimental validation on a two
dof robotic manipulator, developed in a laboratory setting,
demonstrated low joint-space position tracking errors and
practical feasibility.
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A key distinction of our work is its adaptation of advanced
control techniques specifically for BLDC-driven manipula-
tors, significantly broadening its applicability. The use of
orthogonal functions for uncertainty compensation not only
capitalizes on their universal approximation capabilities but
also simplifies the implementation of the control law. Unlike
regressor-based approaches, which require the calculation of
a system-specific regressor matrix, our method eliminates
this cumbersome requirement. Additionally, compared to
neural network-based controllers that involve tuning a large
number of parameters, our design is computationally efficient
and straightforward to implement. Furthermore, unlike fuzzy
logic based control structures that rely on expert knowledge,
our approach does not require such prior information, making
it more convenient and generalizable. In conclusion, this
work provides a solid foundation for future developments
in the control of advanced robotic systems, offering both
theoretical insights and practical benefits.

Future research will focus on extending this framework to
more complex robotic systems, such as redundant manipula-
tors, and integrating adaptive and learning-based techniques
to enhance performance under time-varying uncertainties and
external disturbances. These advancements are expected to
yield even more resilient and versatile control solutions,
paving the way for practical applications across diverse
robotic platforms.
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