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Abstract— This work presents a robust, neural network based
controller formulation for the displacement tracking problem
of electro–hydraulic systems subject to uncertainties associated
with their dynamical parameters and actuator saturation.
Specifically, a neural network based compensator is utilized
to estimate some of the nonlinear components of the uncer-
tain dynamical terms and then in conjunction with robust
backstepping procedure, the overall formulation ensure the
uniform practical stability of the closed–loop system. Stability
and convergence of error terms are proven using Lyapunov
based arguments and numerical studies are presented in order
to illustrate the feasibility of the proposed methodology.

I. INTRODUCTION

The use of electro-hydraulic systems (EHSs) is common
in many areas, especially heavy industry where high power
is required. These actuators are widely used in industrial
applications, construction machinery, in the field of robotics,
etc. The primary motivation for their usage is due to their
ability to generate high power-to-weight ratio making it an
ideal solution for lifting heavy loads. Their fast response time
also enables them to perform tasks quickly and efficiently.

However, due to the complex flow characteristics of
the servo valves within the hydraulic system, EHSs ex-
hibit significant nonlinearities in their dynamics [1]. These
characteristics have motivated engineers and researchers to
concentrate on position control of EHSs. To name a few,
[2] proposed an adaptive backstepping controller that tackled
model uncertainties. In [3], authors proposed an output feed-
back nonlinear controller for the position tracking problem
of EHSs. In [4], a high-gain observer based on a nonlinear
backstepping control method is designed for tracking of a
desired displacement signal.

While several aspects of EHSs have been studied, it seems
that nonlinearities associated with the actuator saturation of
EHSs are usually overlooked in the relevant literature. That
is, in real life industrial applications EHSs are, most of the
time, subject to actuator saturation. And any realistic model
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should consider the nonlinearity associated with the physical
limitations of the electro-hydraulic actuator. However, to
our surprise, there are only a few relevant studies that
target this major problem. In [5], Guo et al. proposed a
saturated adaptive controller for electro-hydraulic actuators
to balance between the anti-windup control effect and the
dynamic response performance of the EHS. In [6], Ye et
al. presented a model-based commander filtering controller
with a Nussbaum function to handle input saturation. [7]
presented a disturbance observer-based fixed-time event-
triggered controller for a networked EHS that is under the
influence of input saturation nonlinearity.

The focus of this work is to design a position trajectory
tracking controller for EHSs subject to modeling anomalies
such as parameter uncertainties and nonlinearities associated
with actuator saturation. To deal with the modeling uncer-
tainties, a robust backstepping control approach is proposed.
The part of the control input that is outside the limits of
the actuator is then considered to be modeled with neural
networks. The neural network compensation term is then
integrated into the robust controller to remedy actuator satu-
ration nonlinearity. The stability of the closed–loop system is
investigated via Lyapunov based approach where the stability
of the closed–loop system and uniform ultimate boundedness
of the error signals are ensured. Specifically, the tracking
error is guaranteed to be driven to a small region around
the origin whose size can be adjusted via the controller
gains. Comparative numerical simulations performed using
realistic system parameters with and without neural network
compensation terms are presented in order to illustrate the
feasibility and performance of the proposed method.

The rest of this paper is organized in the following
manner: The system model description is in Section II.
The error system development and control input design are
presented in Section III. The stability analysis is given in
Section IV. Section V contains numerical simulation. Finally,
conclusions are provided in Section VI.

II. SYSTEM MODEL

The third order dynamic model of an EHA (electro-
hydraulic actuator) can be represented as follows [1]

mÿ = −bẏ − ky +AppL − FL (1)

ṗL = −4βeAp

Vt
ẏ − 4βeCtl

Vt
pL

+
4βeCdω

Vt
√
ρ

sat(u)
√
ps − pL sgn(u) (2)



where the state vector is x = [x1(t) x2(t) x3(t)] =
[y(t) ẏ(t) pL] ∈ R3 in which y(t) is the displacement, ẏ(t) is
the velocity, pL(t) is the load pressure and u(t) is the spool
position of the servo valve which serves as the control input.
The control input u is considered to be subject to actuator
saturation nonlinearity which is quantified with sat(u) where
the control input is constrained as ul ≤ u ≤ uu with ul

and uu respectively denoting lower and upper limits of the
control input. The descriptions of the model parameters in
(1) and (2) are listed in Table I.

TABLE I
MODEL PARAMETERS OF THE EHA SYSTEM

Parameter Description
m Load mass
b Viscous damping coefficient
k Load spring constant
Ap Annulus area of the symmetrical chamber
FL External load of the hydraulic actuator
βe Effective bulk modulus
Vt Half-volume of the cylinder
Ctl Total leakage coefficient of the cylinder
Cd Discharge coefficient
ω Area gradient of the servo valve spool
ρ Density of the hydraulic oil
ps Supply pressure

For ease of presentation, following auxiliary terms
θz0(pL, u), θz1, θz2, θz3 are defined

θz0(pL, u) ≜
√

ps − pL sgn(u), (3)

θz1 ≜
Vt
√
ρ

4βeCdω
, (4)

θz2 ≜
Ap

√
ρ

Cdω
, (5)

θz3 ≜
Ctl

√
ρ

ApCdω
. (6)

Using the definitions of (3)-(6), the dynamics of pL in (2)
can be rewritten as

θz1ṗL = −θz2ẏ − θz3pL + θz0 sat(u). (7)

As the control input is subject to saturation nonlinearity,
the part of the control input that cannot be applied by the
electro-hydraulic actuator is represented with δ(t) and is
defined as follows

δ ≜ u− sat(u) (8)

In lieu of (8), (7) is further rearranged as follows

θz1ṗL = −θz2ẏ − θz3pL + θz0u− δ̄ (9)

where δ̄(t) is defined as

δ̄ ≜ θz0δ. (10)

III. ERROR SYSTEM DEVELOPMENT AND CONTROL
INPUT DESIGN

The objective is to ensure that the actuator tracks the
desired position despite uncertain parameters while also
dealing with saturation nonlinearity. The subsequent devel-
opment relies upon the availability of the measurements

of displacement y, velocity ẏ, load pressure pL and thus
θz0 introduced in (3) is a measurable quantity. The desired
position is represented with yd(t) and is considered to remain
bounded up to its third order time derivative.

To assess the tracking control objective, tracking error,
denoted by e(t) ∈ R is defined as

e ≜ yd − y, (11)

and an auxiliary error term, denoted by r(t) ∈ R, is defined
as

r = ė+ kee (12)

where ke ∈ R+ is a constant control gain. Differentiating
(12), multiplying with m

Ap
, and then utilizing (1), the follow-

ing expression can be obtained
m

Ap
ṙ = fr − e− pL (13)

where fr(e, r, yd, ẏd, ÿd, t) ∈ R is an auxiliary uncertain
variable defined as follows

fr ≜
k

Ap
yd +

b

Ap
ẏd +

m

Ap
ÿd +

1

Ap
FL +

mke − b

Ap
r

+

(
bke
Ap

− mk2e
Ap

− k

Ap
+ 1

)
e. (14)

The above given function can be upper bounded as

|fr|≤ ρr (15)

with ρr(|e|, |r|, t) ∈ R being a known, positive bounding
function.

To continue with the design, the backstepping error, shown
with z(t), is defined as

z ≜ pL − pLd (16)

where pLd(t) ∈ R is to be designed virtual controller.
Substituting (16) into (13) yields

m

Ap
ṙ = fr − e− z − pLd. (17)

The virtual controller is designed as follows

pLd = krr +
ρ2r

ρr|r|ξ+ϵr
r (18)

where ϵr ∈ R is a small positive constant, and |·|ξ is an
absolute value type function introduced to ensure differen-
tiability that is essential for the subsequent development and
is defined as |r|ξ≜

√
r2 + ξ−

√
ξ for some positive constant

ξ. By substituting (18) into (17), the closed loop dynamics
is obtained as

m

Ap
ṙ = fr − e− z − krr −

ρ2r
ρr|r|ξ+ϵr

r. (19)

By differentiating (16) and multiplying both sides with
θz1 and substituting the load pressure dynamics in (9), the
following expression is obtained

θz1ż = fz + r + θz0u− δ̄ (20)



where fz(e, r, z, yd, ẏd, ÿd, t) ∈ R is defined as

fz ≜ −θz2ẏd − θz1ṗLd − θz2kee

+(θz2 − θz3kr − 1) r − θz3z. (21)

The above function can be upper bounded as

|fz|≤ ρz (22)

with ρz(|e|, |r|, |z|, t) ∈ R being a known, positive bounding
function.

Property 1. Via utilizing the universal approximation prop-
erty of neural networks [8], [9], [10], [11], the auxiliary
term δ̄ can be modeled as

δ̄ = wσ + ϵ (23)

where w ∈ R denotes the constant weight, σ(z) ∈ R
is the activation function, and ϵ(t) ∈ R is the functional
reconstruction error. It is noted that |w|≤ w̄ and |ϵ(t)|≤ ϵ̄
are satisfied for positive constants w̄, ϵ̄.

After substituting the neural network approximation of
(23) into (20), following expression is obtained

θz1ż = fz + r + θz0u− wσ − ϵ. (24)

Based on error system development and subsequent stability
analysis, the control input is designed as

u =
1

θz0

(
−kzz −

ρ2z
ρz|z|+ϵz

z + ˆ̄δ

)
(25)

where ˆ̄δ(t) is the neural network based compensation term
that is designed as

ˆ̄δ = ŵσ (26)

where ŵ(t) ∈ R is estimated weight updated according to

˙̂w = −γwσz − kwγw|z|ŵ (27)

where γw, kw ∈ R are positive adaptation gains. Upon
substituting (25) and (26) into (24), the closed loop error
dynamics is reached as

θz1ż = −kzz + r + fz −
ρ2z

ρz|z|+ϵz
z − w̃σ − ϵ (28)

where w̃(t) ≜ w − ŵ ∈ R is the estimation error.

IV. STABILITY ANALYSIS

Theorem 1. The controller designed in (25) with the neural
network based compensator designed as (26) and the online
generated weight in (27) ensure the boundedness of the
closed loop system and uniform ultimate boundedness of the
tracking error provided that the controller gain kz satisfy the
following condition

kz = κz + knϵ̄
2 +

1

16
knk

2
ww̄

4 (29)

where κz is an auxiliary constant, positive control gain and
kn is a positive damping gain.

Proof: To prove the theorem, following non-negative
function V (e, r, z, w̃) ∈ R is defined

V ≜
1

2
e2 +

m

2Ap
r2 +

θz1
2

z2 +
1

2γw
w̃2. (30)

Following bounds can be obtained for (30)

b1∥q∥2≤ V ≤ b2∥q∥2+b3 (31)

where q(t) ≜ [e, r, z]T ∈ R3 is the combined error vector
and b1, b2 and b3 are positive bounds, defined as

b1 ≜
1

2
min{1, m

Ap
, θz1} (32)

b2 ≜
1

2
max{1, m

Ap
, θz1} (33)

b3 ≜
1

2γw
¯̃w2 (34)

with ¯̃w ≥ |w̃(t)| being utilized for some known positive
constant ¯̃w which can be ensured upon utilizing a projection
algorithm (such as in [12], [13], [14]) along with (27).

Taking the time derivative of (30) and then substituting
(12), (19), (27), (28), following expression is obtained

V̇ =− kee
2 − krr

2 − kzz
2 − ϵz + kw|z|w̃ŵ

+ rfr −
ρ2r

ρr|r|ξ+ϵr
r2 + zfz −

ρ2z
ρz|z|+ϵz

z2. (35)

From (15) and (22), following bounds can be reached

rfr −
ρ2r

ρr|r|ξ+ϵr
r2 ≤ ρr|r|−

ρ2rr
2

ρr|r|+ϵr
≤ ϵr (36)

zfz −
ρ2z

ρz|z|+ϵz
z2 ≤ ρz|z|−

ρ2zz
2

ρz|z|+ϵz
≤ ϵz (37)

where in obtaining (36), |r|ξ≤ |r| is utilized. The bounded-
ness of the functional reconstruction error, given in Property
1, along with Young’s inequality yield the following expres-
sion

ϵz ≤ ϵ̄|z|≤ 1

4kn
+ knϵ̄

2z2. (38)

The last term on the first line of the right hand side of (35)
can be manipulated as follows

w̃ŵ = w̃w−w̃2 ≤ w̄|w̃|−|w̃|2= −
( w̄
2
− |w̃|

)2

+
w̄2

4
≤ w̄2

4
(39)

where w̄ was introduced in Property 1. Using Young’s
inequality, following upper bound can be reached

1

4
kww̄

2|z|≤ 1

4kn
+

1

16
knk

2
ww̄

4z2. (40)

Substituting (36)-(40) into the right hand side of (35),
following upper bound is obtained

V̇ ≤ −kee
2 − krr

2 + ϵn

−
(
kz − knϵ̄

2 − 1

16
knk

2
ww̄

4

)
z2 (41)

where ϵn ∈ R+ is an auxiliary constant defined as follows

ϵn ≜ ϵr + ϵz +
1

2kn
. (42)



After substituting the control gain designed in (29), a further
upper bound can be obtained for the right hand side of (41)
as

V̇ ≤ −ke∥e∥2−kr∥r∥2−κz∥z∥2+ϵn, (43)
≤ −κq∥q∥2+ϵn (44)

where κq ≜ min{ke, kr, κz}.
From (31) and (44), the following expression can be

reached
V̇ ≤ −b4V + b5 (45)

where b4 and b5 are positive constants defined as

b4 ≜
κq

b2
(46)

b5 ≜
κqb3
b2

+ ϵn. (47)

From (45), it follows that V ∈ L∞, and thus, the error signals
e, r, z and w̃ are also bounded. Standard signal chasing
techniques can then be utilized to illustrate the boundedness
of the closed–loop signals including the virtual control signal
pLd and the control signal u.

Furthermore, the solution of (45) is obtained as

V (t) ≤ V (0) exp (−b4t) +
b5
b4

(1− exp (−b4t)) , (48)

therefore it is straight forward to conclude that, V approaches
the ultimate bound of b5

b4
. Thus, from (31), the tracking error

e converges to the ultimate bound of
√

2b5
b1b4

which can be
made arbitrarily small via adjusting the control gains.

V. NUMERICAL STUDIES

To demonstrate the effectiveness of the proposed control
method, a comprehensive simulation study was conducted
using the MATLAB/Simulink environment. For a realistic
representation, the EHS was modeled using the Moog D633-
R02K01M0NSM2 valve and the Hoerbiger LB6-1610-0080-
4M piston. The model parameters were selected based on
the experimental setup in [1], with the following values:
m = 3[kg], b = 2200[Ns/m], k = 0[Nm], Ap =
2.01 × 10−4[m2], FL = 0[Nm], βe = 7 × 108[Pa],
Vt = 1.74 × 10−5[m3], Ctl = 2.5 × 10−11, Cd = 0.62,
ω = 2.04 × 10−5[m], ρ = 850[kg/m3], ps = 40[bar].
As described in Section II, the control input u represents
the valve’s spool position and is constrained by its physical
limits, thus saturating u to ±7.9[mm] (i.e., ul = −7.9[mm],
uu = 7.9[mm]). The neural network-based compensation
term, designed in (26) was implemented as a single layer
with z being its input and the hyperbolic tangent function,
tanh(z), was used as the activation function. To improve
the effective input range of the activation function, z , which
has a pressure unit, was scaled by 1 × 10−5 before being
processed. The estimated weight was initiated from zero.

In accordance with the piston’s stroke length of 58[mm],
a sinusoidal desired trajectory of the form yd = 28 +
24.5 sin(2π0.1t− π/2)[mm] was implemented.

The gains of the proposed controller were selected as
follows ke = 1, kr = 8 × 107, kz = 1.5 × 10−4, γw =

1×10−4, kw = 0.1. The parameters of the bounds of fr and
fz , which were introduced in (15) and (22), respectively,
were selected as ρr = 4× 103, ρz = 1 and ϵr = 1× 10−3,
ϵz = 1× 10−6.

To illustrate the effectiveness of the proposed method in
enhancing trajectory tracking performance under the pres-
ence of actuator saturation nonlinearity, simulations were
conducted for two cases: with and without the neural network
component ˆ̄δ in the control scheme. The corresponding
results are presented in Figures 1-7. Figure 1 and Figure
2 depict the trajectory tracking error e and control signal u
along with sat(u), for the proposed controller. It is clear that
satisfactory tracking performance is achieved even tough the
control input is saturated. The variation of ŵ over time is
presented in Figure 3. The tracking error e and the control
input, when the neural network compensation is removed
from the proposed method, are shown in Figure 4 and
Figure 5, respectively. Examination of these figures reveal
that somewhat similar performance to that of the proposed
controller is obtained.
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Fig. 1. Trajectory tracking performance y vs yd (proposed control
algorithm)
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Fig. 2. Control signal (proposed control algorithm)

To further compare the results of the two cases, the
tracking errors and the control signals u are presented,
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Fig. 3. The time evolution of ŵ (proposed control algorithm)
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Fig. 4. Trajectory tracking performance y vs yd (without neural network)

respectively, in Figure 6 and Figure 7, for both cases. A
closer investigation of these figures reveal that, in both
cases, successful trajectory tracking is achieved when the
control signal is within its saturation limits. However, when
the control signals are outside the saturation limits, the
tracking error increases in both cases. Specifically, examining
Figure 6 reveals that the neural network component improves
tracking accuracy even when the control signal is within
its limits and significantly mitigates the effects of actuator
saturation nonlinearity when it occurs. This improvement is
further evident in the zoomed-in plots of Figure 6, where
the proposed controller demonstrates enhanced tracking per-
formance when the control signal reside within its limits. In
an attempt to quantify these, the maximum tracking error is
calculated between 22nd and 23rd seconds, when the control
signal is higher than its upper limit. Specifically, thanks
to the proposed controller, the maximum tracking error
is reduced from 2.83[mm] to 2.27[mm], thus successfully
compensating for the saturation-induced tracking error by
19.78%.
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Fig. 5. Control signal (without neural network)

0 5 10 15 20 25 30 35 40 45

time[s]

-3

-2

-1

0

1

2

3

10
-3

32 33 34 35

2

2.2

2.4

2.6

2.8

10
-3

32 34 36

-2

0

2

4

6

8

10

12

14

16
10

-4

Fig. 6. Comparison of the tracking error for both cases
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Fig. 7. Comparison of the control signal for both cases

VI. CONCLUSIONS

We have presented the design and corresponding anal-
ysis of a robust backstepping type controller formulation
based on neural network compensation for the displacement
tracking problem of EHSs with uncertainties associated with
its dynamical terms and actuator saturation. The proposed



formulation guarantees the uniform practical stability of the
system states and ensures that the tracking error signal is
uniformly ultimately bounded. Simulation studies performed
using the actual parameter of an EHS are presented in order
to illustrate the feasibility of the proposed method. Future
work will concentrate on experimental verifications.
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