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Abstract—In this paper, we consider a discrete-time Markov
Decision Process (MDP) on a finite state-action space with a
long-run risk-sensitive criterion used as the objective function.
We discuss the concept of Blackwell optimality and comment
on intricacies which arise when the risk-neutral expectation is
replaced by the risk-sensitive entropy. Also, we show the relation
between the Blackwell optimality and ultimate stationarity and
provide an illustrative example that helps to better understand
the structural difference between these two concepts.

I. INTRODUCTION

The risk-sensitive criterion in its averaged and discounted
form is a popular discrete-time MDP objective function choice
if one wants to incorporate risk into the decision-making
process and consider long-run time horizon; see [1], [2], [3]
and references therein. Essentially, this criterion is a non-
linear extension of the traditional risk-neutral mean criterion,
in which the risk sensitivity parameter γ ̸= 0 is encoded in
the entropic-utility function 1

γ
lnE

[
eγS
]

that is applied to the
cumulative reward S. Determining whether to use the averaged
approach, where risk is considered per unit of time before
eventually applying a limit, or the discounted criterion, which
involves discounting future returns to ensure finite outcomes, is
not straightforward and often relies on the underlying problem
specification.

In this paper, we focus on the Blackwell optimality, a spe-
cific strategy property that allows transfer from the discounted
to the averaged setup, see [4], [5]. On the one hand, this
property holds significance in risk-neutral finite state-action
framework, particularly within theoretical algorithms relying
on the vanishing-discount approach and numerous Reinforced
Learning techniques that use approximate discounting mech-
anisms, see [6], [7], [8], [9], [10] and references therein. On
the other hand, it has been only recently shown in [11] that
the Blackwell property can be efficiently extended from the
risk-neutral setup to the risk-sensitive setup. The transfer is
unexpectedly challenging due to the structural difference of
the risk-neutral and risk-sensitive setups, even in the finite
framework. In this paper, we investigate the sources of this
challenge, recall recent results obtained in [11], show how
they are connected to the classical theory, and commenKalt
how Blackwell optimality is linked to ultimate stationarity
(also called eventual-stationarity), a concept introduced in [12]
that links optimal policies in the risk-sensitive setup with
optimal policies in the risk-neutral setup. For completeness,
we also introduce an example in which the difference between
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those two concepts is illustrated. We hope that improved
comprehension of Blackwell optimality within risk-sensitive
framework may foster advancements in developing efficient
risk-sensitive reinforcement learning algorithms, an area under
active and intensive exploration, see [13], [14], [15], and
references therein.

II. LONG-RUN RISK-SENSITIVE STOCHASTIC CONTROL
FOR MDPS

Consider a finite state-action space (E,U) and a time-
homogeneous Markov Decision Process (MDP) given via the
family of transition probabilities (Pa)a∈U . As usual, we use
(Ω,F ,(Fn)n∈N) to denote the discrete-time filtered canonical
probabability space and use Π to denote the set of all policies,
that is, sequences of random variables π = (an)n∈N such that
an : Ω → U is Fn-measurable. Furthermore, for π ∈ Π and
x ∈ E we use Pπ

x to denote the controlled probability for
the canonical process (Xn)n∈N with X0 = x. We also use Π′

and Π′′ to denote the sets of all stationary Markov policies
and Markov policies, respectively. With a slight abuse of
notation we link elements of Π′ with functions u : E → U
and sometimes write u ∈ Π′, having in mind that u constitutes
policy π = (an)n∈N ∈ Π such that an = u(Xn); we also write
Pu instead of Pπ . Similarly, we associate elements of Π′′ with
sequences of functions (un)n∈N. We refer to [2] and [11] for
MDP construction details and formal definitions.

Given a fixed running reward function c : E ×U → R, we
consider the long-run risk-sensitive averaged criterion, that is,
the objective function given by

Jγ(x,π) :=

{
liminfn→∞

1
n

1
γ

lnEπ
x

[
eγ ∑

n−1
i=0 c(Xi,ai)

]
, if γ ̸= 0,

liminfn→∞
1
nE

π
x
[
∑

n−1
i=0 c(Xi,ai)

]
, if γ = 0,

(1)
where Eπ

x denotes the expectation for Pπ
x , x ∈ E, π ∈ Π, and

γ ∈R is the risk-aversion parameter; for γ = 0 we recover the
classical risk-neutral criterion, while for γ ̸= 0, we are in the
risk-sensitive setup (see [1]). Our goal is to find optimal policy
π∗ for which we have Jγ(x,π∗) = supπ∈Π Jγ(x,π).

For simplicity, in this paper we decided to impose a strong
uniform mixing assumption on the underlying MDP, that is,
assume condition

inf
a∈U

inf
x,y∈E

Pa(x,y)> 0. (C)

Assumption (C) implies the existence of a unique full-support
invariant measure for any stationary Markov control and
also ensures one-step transition equivalence for all controlled
transition kernels. Although the results presented in this paper
are true under much weaker assumptions linked to classical
mixing and multi-step communication, we decided to present



them in the simplified setup; see [11] details. Notably, under
(C), the optimal value of the objective function is independent
of the starting point; see [11] for details.

The value of the objective criterion defined in (1) as well
as the respective optimal strategies are often approximated
using the discounted setup and so called vanishing discount
approach, see [16]. For a given discount factor β ∈ (0,1), the
discounted analog of criterion (1) is given by

Jγ(x,π;β ) :=

{
1
γ

lnEπ
x

[
eγ ∑

n−1
i=0 β ic(Xi,ai)

]
, if γ ̸= 0,

Eπ
x
[
∑

n−1
i=0 β ic(Xi,ai)

]
, if γ = 0.

(2)

For consistency, we also set Jγ(x,π;1) = Jγ(x,π). In contrast
to (1), the optimal strategy for (2) with γ ̸= 0 does not need
to be Markov stationary even under assumption (C). In this
paper, we study how the optimal strategies induced by (2) are
linked to the optimal strategies induced by (1) and differentiate
the concept of Blackwell optimality and ultimate stationarity
that were introduced in [4] and [17], respectively.

For brevity, we say that a policy is average optimal (or
optimal for averaged problem), if it is optimal for (1) and β -
discount optimal (or optimal for β -discount problem), if it is
optimal for (2).

III. BLACKWELL OPTIMALITY

In a nutshell, a policy π is said to be Blackwell optimal,
if there exists β0 < 1 such that π is β -discount optimal for
any β ∈ (β0,1); we also say that the policy π satisfies the
Blackwell property, if it is Blackwell optimal. In this section
we recall the result from [4] in which existence of Blackwell
optimal policies was shown, and later show how to extend
this concept to risk-sensitive setup based on the recent results
presented in [11].

A. Risk-neutral setup

In this subsection we fix γ = 0 and consider risk-neutral
setup. First, we recall the classical Blackwell property theorem
which ensures existence of Blackwell optimal strategy in the
finite setup

Theorem III.1. Assume (C) and fix γ = 0. Then, there exists
a stationary Markov policy π ∈ Π′ that satisfies the Blackwell
property. Furthermore, policy π is optimal for the risk-neutral
averaged problem.

The first proof of Theorem III.1 was presented in [4],
see also Section 10.1.2 in [5] for an extensive discussion
about Blackwell optimality and related proof concepts. The
traditional approach relies on Laurent series expansions along
with Cramer’s rule to demonstrate that every element of the
inverse matrix (I −βPu)−1 is a rational function of β , where
Pu represents the transition matrix under decision rule u. This
approach is then coupled with the insight that the optimal
policy for any given β can be identified among a fixed set of
stationary policies, thereby reducing the problem to a finite
set of policies. This also shows that the interval [0,1) for
the discount factor can be partitioned into a finite number of

segments, each associated with a decision rule that specifies
the optimal stationary policy for those discount factors.

The concept of Blackwell optimality is now considered as
a canonical result in the risk-neutral criterion MDP literature,
and was extensively studied in numerous papers. We refer to
[18], [19], [20], [5] for details on early developments in this
area and to [9], [21] for a more recent contributions, which
include comprehensive discussion of the Blackwell property
as well as its various modifications. Also, as noted in [10],
the concept of Blackwell optimality is an important topic in
Reinforced Learning for average reward optimality, as it allows
a transition from discounter to average setup. In fact, better
understanding of the Blackwell optimality criterion is stated
as one of the pressing questions in the list of open research
problems formulated in [8].

B. Risk-sensitive setup

Unfortunately, it is not possible to directly transfer The-
orem III.1 and the previously discussed proof methods to
the risk-sensitive setup. In contrast to the optimal discounted
policies for risk-neutral setup, the risk-sensitive discounted
optimal policies usually lack stationarity, resulting in a non-
linear challenge that inhibits direct use of techniques based
on Laurent series expansion. However, a modified Blackwell
property can still be retrieved within the non-stationary frame-
work through proofs relying on a blend of vanishing discount
and span-contraction methods.

Consider a constant risk-sensitivity parameter γ ̸= 0 with
the optimal β -discounted non-stationary Markov policy repre-
sented as (uβ

0 ,u
β

1 ,u
β

2 , . . .). Then, for each n ∈ N, there exists
βn < 1 such that for any β within (βn,1) the stationary Markov
policy (uβ

n ,u
β
n , . . .) is optimal for the risk-sensitive average

problem.
To make this statement more formal, let us consider the

optimal policy induced by the discounted Bellman equation
for problem (2). Namely, for any β ∈ (0,1) and γ ̸= 0, let
π̂β := (ûβ

0 , û
β

1 , . . .), constitute the optimal β -discount policy
given by

ûβ
n (x) := argmax

a∈U

[
c(x,a)+

1
γn

ln

(
∑
y∈E

ewβ (y,γn+1)Pa(x,y)

)]
,

(3)
where γn := γβ n and wβ (·, ·) is the solution to the discounted
Bellman equation

wβ (x,γ) = max
a∈U

[
c(x,a)+

1
γ

ln ∑
y∈E

ewβ (y,βγ)Pa(x,y)

]
. (4)

The policy π̂β might be non-stationary as we might have
w(·,γn+1) ̸≡ w(·,γm+1) and consequently ûβ

n ̸≡ ûβ
m, for n ̸= m;

note that the Bellman equation corresponding to (4) is in fact
recursive and requires us to compute wβ on parameter grid
(γn)n∈N. Also, one can show that wβ (x,γ)= supπ∈Π Jγ(x,π;β ).
We are now ready to present the analogue of Theorem III.1
transferred to the risk-sensitive framework.



Theorem III.2. Assume (C) and fix γ ̸= 0. Then, for any n∈N
there is βn ∈ (0,1) such that for any β ∈ (βn,1) the stationary
Markov policy ûβ

n ∈ Π′ defined in (3) is optimal for the risk-
sensitive averaged problem.

The proof of Theorem III.2 can be found in [11]. The proof
techniques used therein are essentially different from those
used to prove Theorem III.1 and rely on a combination of
span-contraction methods with vanishing discount approach.
One of the key results (also presented and proved in [11])
which contributes to the proof of Theorem III.2 is the van-
ishing discount approximation result, which states that for
appropriately chosen sequences we can recover the solution
to the averaged Bellman equation from the discounted value
functions. Namely, let us fix z ∈ E and consider centered func-
tion w̄β (x,γ) :=wβ (x,γ)−wβ (z,γ). Furthermore, for n∈N, let

λ
β
n (γ) := wβ (z,γβ

n)−wβ (z,γβ
n+1),

w̄β
n (x,γ) := w̄β (x,γβ

n).

Then, we can formulate the following theorem.

Theorem III.3. Assume (C); fix γ ̸= 0. Then, for x ∈ E and
γ ∈ R\{0}, there exists limits

w(x,γ) := lim
β↑1

w̄β
n (x,γ) and λ (γ) := lim

β↑1
λ

β
n (γ).

Furthermore, the function w(·,γ) and the constant λ (γ) consti-
tute the optimal stationary policy to the averaged risk-sensitive
problem, that is, Markov stationary policy

u(x) := argmax
a∈U

[
c(x,a)−λ (γ)+

1
γ

ln ∑
y∈E

eγw(y,γ)Pa(x,y)

]
,

is optimal for the averaged risk-sensitive criterion (1).

Theorem III.3 proof follows directly from the proof of
Theorem 4.4 presented in [11]. The proof is based on recur-
sive selection schemes and use finite space induced uniform
bounds for value functions and optimal constants. We refer to
Proposition 4.2, Proposition 4.3, and proof of Theorem 4.4 in
[11] for more details.

As in the risk-neutral setup, the Bellman property could be
used to provide a link between optimal discounted and optimal
averaged policy for the risk-sensitive criterion. This property is
important in the context of theoretical algorithms based on the
vanishing-discount approach as well as many Machine Learn-
ing methods based on approximating discounting schemes,
see [22], [6], [7], [8] and references therein. Consequently,
we believe that better understanding of Blackwell optimality
in the risk-sensitive setup could help to boost development of
efficient risk-sensitive reinforced learning algorithms which is
an area of on-going and intensive research, see [13], [14], [15]
and references therein.

IV. STRUCTURAL DIFFERENCE BETWEEN RISK-NEUTRAL
AND RISK-SENSITIVE SETUP

In this section, we explain in details the structural difference
between Blackwell optimality in the risk-neutral and risk-
sensitive setup. They key difference is linked to the fact

that while optimal discount policies in the risk-neutral setup
induced by Bellman equation are inherently stationary, this is
not the case for the risk-sensitive setup. Consequently, it is
structurally impossible to directly transfer Theorem III.1 to
the risk-sensitive framework, and one should adjust for non-
stationary policies, as done in Theorem III.2.

To better understand this, let us recall that the value function
in the risk-sensitive discounted Bellman equation given in (4),
that is, the value of wβ (x,γ) in equation

wβ (x,γ) = max
a∈U

[
c(x,a)+

1
γ

ln ∑
y∈E

ewβ (y,βγ)Pa(x,y)

]
(5)

might strongly depend on the underlying risk sensitivity pa-
rameter γ and consequently we might get ûβ

n ̸≡ ûβ
m, for n ̸= m,

where ûβ
n is defined in (3). On the other hand, when γ = 0,

the Bellman equation (5) simplifies to equation

wβ (x,0) = max
a∈U

[
c(x,a)+β ∑

y∈E
wβ (y,0)Pa(x,y)

]
,

so that we only need to consider the value wβ (·,0) and the
respective stationary Markov policy ûβ ∈ Π′ given by

ûβ (x) := argmax
a∈U

[
c(x,a)+β

(
∑
y∈E

wβ (y,0)Pa(x,y)

)]
. (6)

Essentially, this is due to the fact that the expectation operator
embedded in the sum in (5) is positively homogeneous, while
the entropy operator encoded in the logarithm of the expecta-
tion of the exponent in 5 is a proper convex (or concave) func-
tion which cannot be linearly scaled. Furthermore, it should
be noted that while the set of stationary Markov policies Π′ is
finite, the set of Markov policies Π′′ is not, which inhibits
the usage of methods described in Section III-A. This is
essentially why the equivalent of Theorem III.1 cannot be true
in the risk-sensitive setup and why the related proof techniques
do not work in this setup. Namely, we cannot restrict our
analysis to the finite number of stationary Markov policies
in the risk-sensitive cane. On the other hand, this raises a
natural question under which additional conditions there exists
a stationary solution to the risk-sensitive discounted problem
for any discount factor. In particular, one expects this to be
the case for values of γ which are sufficiently close to zero.
In this case, the entropy operator becomes almost linear (as,
in the limit, it converges to the expectation operator). This
simple idea leads to the concept of ultimate stationarity which
is formulated in the next subsection.

V. INTERACTION BETWEEN BLACKWELL OPTIMALITY AND
ULTIMATE STATIONARITY IN THE RISK-SENSITIVE SETUP

The concept of ultimate stationarity was initially developed
in [12], where a specific form of risk-neutral optimal strategy,
also optimal in the risk-aversion neighborhood of zero, was
studied. We say that π ∈ Π′′ is an ultimately stationary policy,
if it can be represented as

π = (u0,u1, . . . ,uN−1,u,u, . . .), (7)



for some N ∈ N and one-step policies u1, . . . ,uN−1,u ∈ Π′.
In other words, the ultimate stationary policy π becomes a
stationary Markov policy after a fixed number of steps. With
a slight abuse of notation, we also refer to policy u in (7) as the
ultimate stationary policy. The first (essential) step in showing
the existence of an ultimate stationarity policy is formulated
in the following theorem.

Theorem V.1. Assume (C) and fix β ∈ (0,1). Then, there is
γ0 < 0 (resp. γ0 > 0) and u ∈ Π′ such that u is optimal for the
discounted problem (2) for any γ ∈ [γ0,0] (resp. γ ∈ [0,γ0]).

The proof of Theorem V.1 can be found in [17]. Knowing
this result, one can deduce that, for fixed β ∈ (0,1) and γ ∈
R \ {0}, the nth one-step policy in (3) could be seen as the
1st one-step policy for the discounted problem with initial
risk-aversion equal to β nγ , which is closer to zero than the
initial parameter γ . Note that ultimately stationary policy u in
representation (7) corresponds to policy from Theorem V.1.
This observation can be used to prove the existence of an
ultimate stationary policy for any value of β ∈ (0,1); of course,
one expects that the closer the value of β to 1 is, the more
steps one needs to make to ensure the stationarity property
in the optimal policy. For details, we refer to [12] where this
result is formulated and proved.

Upon initial inspection, one would hope that we can use
Theorem V.1 to somehow recover the statement of Theo-
rem III.1 or Theorem III.2. Unfortunately, this is not the case,
as those theorems are of different nature. Namely

• The Blackwell policies are linked to the situation in which
risk aversion γ is fixed and we let β → 1;

• The ultimate stationary policies are linked to the situation
in which β is fixed and we let γ → 0.

Those properties are structurally different and there is no direct
connection between them. In particular, apart for some special
situations, in which the initial risk-aversion parameter is very
close to zero, the sets of Blackwell policies and ultimate
stationary could be disjoint. This is presented in the illustrative
example in Section VI.

Remark 1. The existence of ultimate stationary policies (and
Blackwell policies) is inherently linked to the finite space
structure, in both risk-neutral and risk-sensitive cases. In
fact, in the denumerable case, one can show direct existence
counterexamples if no additional ergodic-mixing assumptions
are imposed. We refer to [12] and [23] for details.

VI. ILLUSTRATIVE EXAMPLE

In this section, we present an extended and refined analysis
of the example introduced in [11] that was based on [12]. We
use it to illustrate the structural difference between risk-neutral
and risk-sensitive setups, and to visualise different nature of
the Blackwell optimality and the ultimate stationarity property.

Let (E,U) := ({1,2,3},{0,1}) with transition matrices-
given by

P0 =

 2ε 0.5− ε 0.5− ε

1−2ε ε ε

1−2ε ε ε

 ,
P1 =

 2ε 0.9− ε 0.1− ε

1−2ε ε ε

1−2ε ε ε

 ,
for ε ∈ (0,0.1), and cost function c : E ×U → R defined as

c(x,0) =


0 if x = 1
0 if x = 2
8 if x = 3

and c(x,1) =


1 if x = 1
0 if x = 2
8 if x = 3

.

In this example, we have eight Markov stationary policies.
Noting that P1(i, ·)≡ P2(i, ·) and c(i, ·)≡ const for i ∈ {2,3},
we conclude that it does not matter which action is assigned
to state 2 and 3. Consequently, without loss of generality, it is
sufficient to consider Markov policies π =(an)n∈N, where an =
u0(Xn) or an = u1(Xn) for every n ∈ N, where u0(·) ≡ 0 and
u1(·)≡ 1. Furthermore, for ε close to zero, following similar
reasoning to the one introduced in [11], one can conclude
that for any β ∈ (0,1) and γ ∈ R the optimal Markov policy
π̂(β ,γ) ∈ Π′′ must be of the form

π(β ,γ) = (u0, . . . ,u0,u1,u1, . . .),

that is, in the fixed number of initial steps, say n(β ,γ), we use
policy u0, and then switch to policy u1. As shown in [11], the
policy u0 is typically Blackwell optimal and u1 is ultimately
stationary. To illustrate this, we have computed the switch
value points, i.e. values of n(β ,γ) on the (0.5,1)× [−5,5]
dyadic grid of step-size δ := 0.01. For simplicity we per-
formed the calculation for the limit case ε = 0 as it allows
decomposing (Xn)n∈N into a series of independent (two-step)
innovations which in turn allows decomposing entropic utility
of the sum into entropic utilities of individual components.
For brevity, we skip the technical calculation and focus on
the output results. The obtained structure of optimal policies,
represented by the value of n(β ,γ), is presented via a heat
map in Figure 1.

The plot nicely illustrates the structural difference between
ultimate stationarity and Blackwell property:

• The ultimate stationarity property is represented by hor-
izontal lines in Figure 1. Namely, for any fixed value
of β , we ultimately switch to u1 after n(β ,γ) steps.
Furthermore, the closer we are to the risk-neutral case,
the faster we switch; as expected, the policy u1 becomes
optimal stationary for values of γ sufficiently close to
zero.

• The Blackwell property is represented by vertical lines in
Figure 1. Namely, for any fixed value of γ the number
of steps n(β ,γ) goes either to 0 or ∞ when (1−β )→ 0.
The limit is determined by the optimal policy for the risk-
sensitive averaged case: if u1 is optimal for a given γ , then
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Fig. 1. The plot presents the optimal policy switching point n(β ,γ) from
Markov policy u0 to Markov policy u1 for different values of γ ∈ [−5,5] and
β ∈ (0.5,1).

we get n(β ,γ)→ 0 as β → 1, and if u0 is optimal, then
we get n(β ,γ)→ ∞ as β → 1.

We note that the Blackwell optimal policy might be different
than the ultimate stationary policy. In our example, this is the
case for values of γ sufficiently far away from zero. To better
understand why this is the case, we can plot the difference
between averaged risk-sensitive objective functions for u1 and
u2, for different values of γ ∈ R. The plot of the function
g(γ) := [Jγ(1,u1;1)− Jγ(1,u0;1)] is presented in Figure 2.

−4 −2 0 2 4
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1.
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g

Fig. 2. The plot presents the difference between Jγ (1,u1;1) and Jγ (1,u0;1)
for different values of γ ∈ [−5,5]. Positive difference indicates optimality u1,
while negative difference indicates optimality of u0.

In a nutshell, Blackwell optimal policy recovers the risk
averaged optimal policy which depends on the value of γ ∈R.
As expected, the switching points in Figure 1 are matching
the zeroes of function g presented in Figure 2. This illustrates
that while ultimate stationary policy is essentially recovering
optimal behavior under almost risk-neutral risk regime, the
Blackwell policy is recovering optimal behavior for the risk-
sensitive case, when the discount is vanishing.
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