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Abstract—This paper considers a long-term average inven-
tory control problem, in which the inventory is subject to
diffusion and compound Poisson demands. It establishes the
optimality of an (s, S) ordering policy for the minimization of
the long-term average total cost.
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1. Introduction
This paper considers an inventory control problem

where the underlying inventory is subject to diffusion and
compound Poisson demands. The objective is to mini-
mize the long-term average cost, which comprises three
components: holding costs, shortage (or backordering)
costs, and ordering costs. Holding costs represent the
expenses associated with maintaining inventory. When
inventory levels fall below zero, shortage or backordering
costs are incurred due to unmet demand. Additionally,
there is a positive control cost associated with restocking
or adjusting inventory levels. The inclusion of positive
ordering costs implies that the mathematical problem is
of impulse control type. Hence, the optimal control policy
involves discrete interventions, rather than continuous
adjustments, to effectively manage inventory dynamics
while minimizing overall costs.

Optimal inventory control problems have been exten-
sively studied in the literature. Some early work on
continuous time models can be found in Bather (1966),
Harrison et al. (1983), Sulem (1986) and the refer-
ences therein. More recently, Benkherouf and Bensoussan
(2009), Bensoussan et al. (2005) established the optimality
of an (s, S) policy under a discounted cost criterion for
systems with compound Poisson and diffusion demand
using quasi-variational inequalities approach. Similarly,
Yamazaki (2017) proved the optimality of an (s, S) policy
for a general spectrally positive Lévy demand process.
The optimality of an (s, S) policy under a discounted
criterion was also derived in Helmes et al. (2015) for state-
dependent inventory process. In contrast, Christensen and
Sohr (2020), He et al. (2017), Helmes et al. (2017, 2018,
2025), Yao et al. (2015) focused on optimal inventory
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control using long-term average cost criteria. We also refer
to Bensoussan (2011) for a unified theory of dynamic
programming and its applications in inventory control
as well as Perera and Sethi (2023) for a comprehensive
literature review on inventory control.

Notably, the majority of existing literature focuses on
inventory control problems under discounted cost criteria.
In contrast, studies analyzing long-term average costs
primarily concentrate on continuous inventory processes.
Research addressing long-term average inventory control
for discontinuous inventory processes remains relatively
scarce. An exception is Christensen and Sohr (2020),
which develops a solution technique for a class of long-
term average impulse control problems involving general
Lévy processes. This paper seeks to investigate long-term
average inventory control for a jump diffusion process
using a different and more direct approach.

In our formulation, in the absence of control, the
inventory system is governed by (2.1), where the Brow-
nian motion accounts for the infinitesimal fluctuations
in inventory levels, and the compound Poisson process
captures sudden and discrete changes due to unexpected
demand spikes or supply chain disruptions. The long-term
average cost criterion (2.3) serves as a robust foundation
for developing optimal policies over an extended time
horizon, ensuring both stability and efficiency in man-
aging the complex dynamics of such systems. To address
problem (2.3), we extend the solution technique of Helmes
et al. (2017), originally developed for long-term average
inventory control in continuous inventory processes, to
accommodate systems with jumps. Specifically, we begin
by formulating a nonlinear optimization problem, which
yields two critical thresholds, y∗ < z∗. These thresholds
not only facilitate the construction of a sufficiently smooth
solution G to the quasi-variational inequality associated
with (2.3), but also yield the optimal value for problem
(2.3). Finally, we establish the optimality of the (y∗, z∗)
policy through a verification theorem.

The paper is organized as follows. We begin with
problem formulation in Section 2, and then solve the
related quasi-variational inequality in Section 3. Section 4
establishes the optimality of the (y∗, z∗) policy. The paper
concludes with several remarks in Section 5.

2. Problem Formulation
Our work builds upon the formulation in Bensoussan

et al. (2005), which considers optimal inventory control



with compound Poisson and diffusion demand under a
discounted criterion. This paper focuses on the long-term
average criterion. Suppose that in the absence of control,
the inventory of a single item is modeled by

X0
t = x− µt+ σWt −Nt,

Nt =

Pt∑
i=1

ξi 0 ≤ t <∞.
(2.1)

where x is the initial inventory level, µ, σ are positive
constants, W is a one-dimensional standard Brownian
motion, P is a Poisson process with rate λ > 0, and
{ξn}∞n=1 is a sequence of independent and identically dis-
tributed exponential random variables with mean 1

ρ > 0.
We assume that W , P, and {ξn}∞n=1 are independent. Put
Ft := σ(Ws, Ns, 0 ≤ s ≤ t} for each t ≥ 0.

An admissible inventory control policy is a sequence
(τ, Y ) = {(τn, Yn);n = 1, 2, . . . } in which 0 ≤ τ1 ≤
τ2 ≤ . . . are {Ft+}-stopping times and for each n, Yn
is nonnegative, Fτk -measurable. The dynamics of the
inventory under an admissible control policy (τ, Y ) is

Xt = x−µt+σWt−Nt+

∞∑
k=1

YkI{τk<t}, 0 ≤ t <∞. (2.2)

The goal is to minimize the long-term average cost

J(τ, Y ) := lim sup
t→∞

1

t
E
[∫ t

0

c0(Xs)ds

+

∞∑
k=1

[c1 + c2Yk]I{τk<t}

]
,

(2.3)

where c0(x) := chxI{x≥0} − cbxI{x<0}, and ch, cb, c1, and
c2 are positive constants. The quasi-variational inequality
associated with (2.3) is

Av(x)− c0(x) + η ≤ 0,

v(x) ≥Mv(x) := supy>x{v(y)− c1 − c2(y − x)},
(Av(x)− c0(x) + η)(v(x)−Mv(x)) = 0,

(2.4)
for all x ∈ R, where v is a sufficiently smooth function
and η is a constant, and the operator A is defined by

Af(x) :=
1

2
σ2f ′′(x)− µf ′(x)

+ λ

∫ ∞

0

[f(x− y)− f(x)]ρe−ρydy, f ∈ C2(R).

Note that if (v, η) is a solution to (2.4), so is (v +K, η)
for any K ∈ R.

3. Explicit Solution to the QVI
This section aims to find an explicit solution to (2.4).

First, we note that the function ψ(x) = ρx
λ+ρµ solves the

integro-differential equation

Aψ(x) = −1. (3.1)

We next consider the integro-differential equation

Ag0(x) = −c0(x). (3.2)

Denote h(x) :=
∫∞
0
g0(x− y)ρe−ρydy. It is easy to verify

that h′(x) + ρh(x) = ρg0(x). Therefore g0 solves (3.2)
if and only if it solves the following ordinary differential
equation

1

2
σ2g′′′0 (x) +

(
1

2
σ2ρ− µ

)
g′′0 (x)

− (ρµ+ λ)g′0(x) = −c′0(x)− ρc0(x),

(3.3)

together with the condition
1

2
σ2g′′0 (0)− µg′0(0)− λg0(0)

+ λ

∫ ∞

0

g0(−y)ρe−ρydy = −c0(0).
(3.4)

The characteristic equation to (3.3)

1

2
σ2β3 +

(
1

2
σ2ρ− µ

)
β2 − (ρµ+ λ)β = 0

has three roots

β1 :=
µ

σ2
− ρ

2
−

√(ρ
2
+

µ

σ2

)2

+
2λ

σ2
, 0,

and β2 :=
µ

σ2
− ρ

2
+

√(ρ
2
+

µ

σ2

)2

+
2λ

σ2
.

(3.5)

Note that β1 < −ρ < 0 and β2 > 0. Using these roots and
taking into account of (3.4) and the smooth pasting at 0,
detailed calculations reveal that

g0(x) =



σ2(cb+ch)(ρ+β2)β
2
1

2β2(λ+ρµ)2(β2−β1)
eβ2x

− ρcb
2(λ+ρµ)x

2 − cb(ρ
2σ2+2λ)

2(λ+ρµ)2 x if x < 0,

σ2(cb+ch)(ρ+β1)β
2
2

2β1(λ+ρµ)2(β2−β1)
eβ1x + b3

+ ρch
2(λ+ρµ)x

2 + ch(ρ
2σ2+2λ)

2(λ+ρµ)2 x if x ≥ 0.

(3.6)

is a solution to (3.2), where

b3 =
σ2(cb + ch)(ρ+ β2)β

2
1

2β2(λ+ ρµ)2(β2 − β1)
− σ2(cb + ch)(ρ+ β1)β

2
2

2β1(λ+ ρµ)2(β2 − β1)
.

Lemma 3.1. The function g0 is twice continuously differ-
entiable on R. Moreover, if

1− β2(ρ
2σ2 + 2λ)

2ρ(λ+ ρµ)
− log

(
cbρ(β2 − β1)

(cb + ch)(ρ+ β2)(−β1)

)
≥ 0.

(3.7)
then the function g0 is increasing.

Proof. It is easy to see that g0 ∈ C(R). In addition, we
have g′0(x) = k(x)I{x≥0} + h(x)I{x<0}, where

k(x) =
σ2(cb + ch)(ρ+ β1)β

2
2

2(λ+ ρµ)2(β2 − β1)
eβ1x

+
ρch

λ+ ρµ
x+

ch(ρ
2σ2 + 2λ)

2(λ+ ρµ)2
, x ≥ 0 (3.8)

and

h(x) =
1

λ+ ρµ

[
σ2(cb + ch)(ρ+ β2)β

2
1

2(ρµ+ λ)(β2 − β1)
eβ2x − ρcbx

]



− cb(ρ
2σ2 + 2λ)

2(ρµ+ λ)2
, x < 0. (3.9)

Detailed computations reveal that k(0) = h(0−) and
k′(0+) = h′(0−). This establishes the assertion that
g0 ∈ C2(R).

We now show that g0 is increasing under condition (3.7).
Since β1 < −ρ < 0 < β2, it follows that

k′(x) =
σ2(cb + ch)(ρ+ β1)β1β

2
2

2(λ+ ρµ)2(β2 − β1)
eβ1x +

ρch
λ+ ρµ

> 0,

for x ≥ 0. That is, k is strictly increasing. On the other
hand, it is easy to see that h is strictly convex. Moreover,
setting h′(x̃) = 0 yields that

x̃ =
1

β2
log

(
cb

cb + ch
· 2ρ(λ+ ρµ)(β2 − β1)

σ2(ρ+ β2)β2
1β2

)
=

1

β2
log

(
cb

cb + ch
· ρ(β2 − β1)

(ρ+ β2)(−β1)

)
,

(3.10)

where the last equality follows from the fact that σ2β1β2 =
−2(λ+ρµ). Furthermore, since ρ+β1 < 0 and β2 > 0, we
can readily verify that 0 < ρ(β2−β1)

(ρ+β2)(−β1)
< 1 and hence

x̃ <
1

β2
log

cb
cb + ch

< 0.

Therefore h is strictly decreasing in (−∞, x̃] and strictly
increasing in (x̃, 0). In other words, h and hence g′0 achieves
their minimum value at x̃. Hence, in view of (3.7), we have
for any x ∈ R,

g′0(x) ≥ g′0(x̃) =
ρcb

β2(λ+ ρµ)

[
1− β2(ρ

2σ2 + 2λ)

2ρ(λ+ ρµ)

− log

(
cb

cb + ch
· ρ(β2 − β1)

(ρ+ β2)(−β1)

)]
≥ 0.

This shows that g0 is increasing.

Remark 3.2. Note that when λ = 0, the function g0 is
always increasing. In fact, when λ = 0, the uncontrolled
inventory (2.1) is a drifted Brownian motion

X0
t = x− µt+ σWt, t ≥ 0,

and the function g0 can be computed to be

g0(x) =


− cb

2µ x
2 − cbσ

2

2µ2 x

+σ4(cb+ch)
4µ3

(
e2µx/σ

2 − 1
)
, x < 0,

ch
2µ x

2 + chσ
2

2µ2 x, x ≥ 0.

Again, we can verify that g0 ∈ C2(R) and that g′0 achieves
its minimum value at x̃ := σ2

2µ log cb
cb+ch

< 0 with

g′0(x̃) = −cbσ
2

2µ2
log

cb
cb + ch

> 0.

Hence it follows that g′0(x) > 0 for all x ∈ R.

Proposition 3.3. Consider the function

F (y, z) =
c1 + c2(z − y) +Bg0(y, z)

Bψ(y, z)
, (3.11)

for −∞ < y < z < ∞. Then there exists a pair y∗ < z∗
such that

F∗ := F (y∗, z∗) = inf
y<z

F (y, z) > 0. (3.12)

Moreover, the first order optimality condition holds true

F∗ = F (y∗, z∗) =
c2 + g′0(y∗)

ψ′(y∗)
=
c2 + g′0(z∗)

ψ′(z∗)
. (3.13)

Proof. Note that F (y, z) → ∞ when z − y → 0. For any
y fixed, F (y, z) → ∞ as z → ∞ and similarly for any z
fixed, F (y, z) → ∞ as y → −∞. On the other hand, using
the definition of the function ψ, we have

F (y, z) >
λ+ ρµ

ρ
· g0(z)− g0(y)

z − y
.

Note also that g′0(x) → ∞ as x→ ∞ or x→ −∞. There-
fore it follows that F (y, z) → ∞ when (y, z) → (∞,∞) or
(y, z) → (−∞,−∞). Also it is clear from the expression for
g0 that g0(z)−g0(y)

z−y → ∞ as (y, z) → (−∞,∞). Hence there
exists a compact subset K of R :=

{
(y, z) ∈ R2 : y < z

}
so

that F achieves its minimum value at some (y∗, z∗) ∈ K.
In addition, the first order optimality condition leads to
(3.13), which, in turn, implies that F∗ ≥ c2

λ+ρµ
ρ > 0.

Now let’s consider the function

G(x) =

{
F∗ψ(x)− g0(x), if x ≥ y∗,

G(z∗)− c1 − c2(z∗ − x), if x < y∗.
(3.14)

Using the definition of F∗ = F (y∗, z∗) and (3.13), we can
readily verify that G ∈ C2(R \ {y∗}) ∩ C1(R). In fact, we
have

G(y−∗ ) = G(z∗)− (c1 + c2(z∗ − y∗))

= F∗ψ(z∗)− g0(z∗)

− (F∗[ψ(z∗)− ψ(y∗)]− [g0(z∗)− g0(y∗)])

= F∗ψ(y∗)− g0(y∗) = G(y+∗ );

and from (3.13),

G′(y+∗ ) = F∗ψ
′(y∗)− g′0(y∗) = c2 = G′(y−∗ ).

Proposition 3.4. The function G defined in (3.14) and the
constant F∗ of (3.12) together satisfy

AG(x)− c0(x) + F∗ ≤ 0, x ∈ R \ {y∗} ,
G(z)−G(y) ≤ c1 + c2(z − y), y < z,

AG(x)− c0(x) + F∗ = 0, x ∈ [y∗,∞)

G(z∗)−G(x) = c1 + c2(z∗ − x), x ∈ (−∞, y∗].
(3.15)

Therefore the pair (G,F∗) is a solution to the quasi-
variational inequality (2.4).

Proof. First, we can use the definition of F∗ and detailed
computations to establish

G(z)−G(y) ≤ c1 + c2(z − y), for all y < z,

G(z∗)−G(x) = c1 + c2(z∗ − x), for all x ≤ y∗.



Therefore the second and fourth equations in (3.15) are
established.

Next we show that

AG(x)− c0(x) + F∗ ≤ 0, for all x ∈ R. (3.16)

Obviously (3.16) holds with equality for x > y∗ by the
definitions of ψ, g0, and G. It remains to show (3.16) for
x < y∗. First we notice that since ψ is linear, the first order
optimality condition (3.13) implies that g′0(y∗) = g′0(z∗)
for y∗ < z∗. Recall from the proof of Lemma 3.1 that
g′0(x) = k(x) for x ≥ 0 and that k is strictly increasing.
Hence the fact that g′0(y∗) = g′0(z∗) for y∗ < z∗ necessarily
implies that y∗ is negative.

Now using the the definition of G and fact that y∗ < 0,
it follows that for x < y∗, we have AG(x) = − c2(λ+ρµ)

ρ .
Using (3.13) and the definition of ψ, we have F∗ =
c2(λ+ρµ)

ρ + λ+ρµ
ρ g′0(y∗). Hence for x < y∗ < 0, we have

AG(x)− c0(x) + F∗

= cb(x− y∗) +
1

2ρ(λ+ ρµ)

×
[
σ2(cb + ch)(ρ+ β2)β

2
1

β2 − β1
eβ2y∗ − cb(ρ

2σ2 + 2λ)

]
≤ 1

2ρ(λ+ ρµ)

[
σ2(cb + ch)(ρ+ β2)β

2
1

β2 − β1
eβ2y∗

− cb(ρ
2σ2 + 2λ)

]
. (3.17)

Recall that we have shown in Lemma 3.1 that g′0
achieves its unique minimum value at x̃ < 0. Thus it
follows from the facts that g′0(y∗) = g′0(z∗) and y∗ < 0
that y∗ < x̃. But then we have

σ2(cb + ch)(ρ+ β2)β
2
1

β2 − β1
eβ2y∗ − cb(ρ

2σ2 + 2λ)

<
σ2(cb + ch)(ρ+ β2)β

2
1

β2 − β1
eβ2x̃ − cb(ρ

2σ2 + 2λ)

= cb

[
2ρ(λ+ ρµ)

β2
− (ρ2σ2 + 2λ)

]
. (3.18)

Recall that β2 > 0 solves the equation

0 =
1

2
σ2β2

2 − µβ2 +
λρ

β2 + ρ
− λ

=
1

2
σ2β2

2 − µβ2 + λ

∫ ∞

0

[e−β2y − 1]ρe−ρydy.

Using the elementary inequality e−x − 1 ≤ x2

2 − x, x > 0,
we compute

0 ≤ 1

2
σ2β2

2 − µβ2 + λ

∫ ∞

0

(
β2
2y

2

2
− β2y

)
ρe−ρydy

=
1

2
σ2β2

2 − µβ2 + λ

[
−β2
ρ

+
1

2
β2
2

2

ρ2

]
=

[
σ2

2
+

λ

ρ2

]
β2
2 −

[
µ+

λ

ρ

]
β2.

Then it follows that β2 ≥ µ+λ
ρ

σ2

2 + λ
ρ2

= 2ρ(λ+ρµ)
ρ2σ2+2λ . This,

together with (3.17) and (3.18), implies that AG(x) −
c0(x) + F∗ < 0 or (3.16), as desired.

4. Optimal Impulse Policy
We have found a solution (G,F∗) to (3.15) and hence

(2.4). This section will prove that the (s, S) policy with s =
y∗ and S = z∗ whose existence follows from Proposition
3.3 is optimal and that F∗ is the optimal long-term average
cost for problem (2.3).

Lemma 4.1. Let (τ, Y ) ∈ A and for k = 1, 2, . . ., let τk
denote the time of the kth order. Assume that

E [f(Xt)] = f(x) + E
[∫ t

0

Af(Xs)ds

+

∞∑
k=1

[f(Xτ+
k
)− f(Xτk)]I{τk<t}

]
.

Then with τ0 := 0,

E[f(Xt)] = E

[ ∞∑
j=0

I{τj<t≤τj+1}

[∫ t

τj

Af(Xs)ds+ f(Xτ+
j
)

]]
.

(4.1)

Proof. Using the optional sampling theorem to justify the
second equality below, we obtain for any j ≥ 0,

E
[
I{τj<t≤τj+1}[f(Xt)− f(Xτ+

j
)]
∣∣∣Ft

]
= I{τj<t≤τj+1}E

[
f(Xt∧τj+1

)− f(Xt∧τ+
j
)]
∣∣Ft

]
= I{τj<t≤τj+1}E

[∫ t∧τj+1

t∧τj

Af(Xs)ds
∣∣∣Ft

]
= E

[
I{τj<t≤τj+1}

∫ t∧τj+1

t∧τj

Af(Xs)ds
∣∣∣Ft

]
= E

[
I{τj<t≤τj+1}

∫ t

τj

Af(Xs)ds
∣∣∣Ft

]
.

This together with

E[f(Xt)] = E

[ ∞∑
j=0

I{τj<t≤τj+1}f(Xt)

]

= E

[ ∞∑
j=0

I{τj<t≤τj+1}
[
f(Xt)− f(Xτ+

j
) + f(Xτ+

j
)
]]

gives (4.1), as desired.

Theorem 4.2. Assume condition (3.7). Let (τ, Y ) be any
admissible impulse control policy satisfying

lim inf
t→∞

lim inf
n→∞

1

t
Ex[G(Xt∧σn

)] ≥ 0, ∀x ∈ R. (4.2)

where σn = inf{t ≥ 0 : |Xt| ≥ n}, n ∈ N, and X is
the controlled process under (τ, Y ). Then F∗ ≤ J(τ, Y ),
where F∗ is defined in (3.12). Moreover, the impulse policy
defined by

τ∗1 := inf {t ≥ 0 : X∗
t ≤ y∗} , Y ∗

1 := z∗ −X∗
τ∗
1
, (4.3)



and for k ≥ 1,
τ∗k+1 := inf {t ≥ τ∗k : X∗

t ≤ y∗} , Y ∗
k+1 := z∗ −X∗

τ∗
k+1

(4.4)
is an optimal impulse policy, where y∗ and z∗ are as in
(3.12).

Proof. The proof is divided into two steps.
Step 1. Let (τ, Y ) be an arbitrary admissible impulse

control policy in A so that the resulting controlled process
X satisfies condition (4.2). We shall prove that F∗ is a
lower bound on J(τ, Y ). Obviously it is enough to consider
(τ, Y ) ∈ A with J(τ, Y ) <∞.

We use a localization argument. For each n ∈ N, define
the stopping time σn as in the statement of the theorem.
Then applying Dynkin’s formula to the function G of
(3.14) yields
Ex[G(Xt∧σn)]−G(x)

= Ex

[∫ t∧σn

0

AG(Xs)ds+

∞∑
k=1

I{τk<t∧σn}BG(Xτk , Xτ+
k
)

]
≤ Ex

[∫ t∧σn

0

[c0(Xs)− F∗]ds

+

∞∑
k=1

I{τk<t∧σn}(c1 + c2|Xτ+
k
−Xτk |)

]
,

where the inequality follows from Proposition 3.4. Rear-
ranging the terms and dividing both sides by t, it follows
that

1

t
Ex[F∗(t ∧ σn) +G(Xt∧σn

)]

≤ 1

t
G(x) +

1

t
Ex

[∫ t∧σn

0

c0(Xs)ds (4.5)

+

∞∑
k=1

I{τk<t∧σn}(c1 + c2|Xτ+
k
−Xτk |)

]
.

Clearly the sequence σn is nondecreasing. Denote σ :=
limn→∞ σn. If P {σ <∞} > 0, then J(τ, Y ) = ∞, result-
ing a contradiction to the assumption that J(τ, Y ) < ∞.
Let’s assume from now on that P {σ = ∞} = 1. Therefore,
letting n → ∞ in (4.5), it follows from the Monotone
Convergence Theorem that

F∗ + lim inf
n→∞

1

t
Ex[G(Xt∧σn)]

≤ G(x)

t
+

1

t
Ex

[∫ t

0

c0(Xs)ds (4.6)

+

∞∑
k=1

I{τk<t}(c1 + c2|Xτ+
k
−Xτk |)

]
.

Passing to the limit as t→ ∞ in (4.6) and using (4.2), we
obtain

F∗ ≤ lim sup
t→∞

1

t
Ex

[∫ t

0

c0(Xs)ds

+

∞∑
k=1

I{τk<t}(c1 + c2|Xτ+
k
−Xτk |)

]

= J(τ, Y ).

Step 2. Now let (τ∗, Y ∗) be an impulse policy defined
in (4.3)–(4.4), and denote by X∗ the corresponding con-
trolled inventory process. Then thanks to Proposition 3.4,
all inequalities up to (4.6) in Step 1 are equalities:

F∗ +
1

t
lim sup
n→∞

Ex[G(X
∗
t∧σn

)]

=
G(x)

t
+

1

t
Ex

[∫ t

0

c0(X
∗
s )ds

+

∞∑
k=1

I{τ∗
k<t}c1(X

∗
τ∗
k
, X∗

τ∗+
k

)

]
.

(4.7)

We need to show that
lim supt→∞ lim supn→∞ t−1Ex[G(X

∗
t∧σn

)] = 0. To this
end, we notice that X∗

τ∗+
j

= z∗ and hence an application
of (4.1) yields that

Ex[g0(X
∗
t∧σn

)]

= Ex

[ ∞∑
j=0

I{τ∗
j <t∧σn≤τ∗

j+1}

[∫ t

τ∗
j

−c0(X∗
s )ds+ g0(z∗)

]]

≤ Ex

[ ∞∑
j=0

I{τ∗
j <t∧σn≤τ∗

j+1}g0(z∗)

]
= g0(z∗).

On the other hand, since X∗
t ≥ y∗ for all t ̸= τ∗j , j =

1, 2, . . . , and g0 is increasing, it follows that Ex[g0(X
∗
t )] ≥

g0(y∗) for all t ̸= τ∗j , j = 1, 2, . . . . But X∗
τ∗
j

may be strictly
less than y∗ due an exponential jump. That is, it is possible
that X∗

τ∗−
j

≥ y∗ but X∗
τ∗
j
= X∗

τ∗−
j

− ξi < y∗ for some i

with ξi being exponentially distributed, at which point, an
impulse control pushes the inventory back to level X∗

τ∗+
j

=

z∗. Recall that we have shown in Lemma 3.1 that g0 is
increasing under condition (3.7). Thus we can deduce

Ex[g0(X
∗
τ∗
j
)] = Ex[g0(X

∗
τ∗−
j

− ξi))] ≥ Ex[g0(y∗ − ξi)]

=

∫ ∞

0

g0(y∗ − y)ρe−ρydy =: K1 > −∞.

Therefore, for any t > 0 and n ∈ N, we have

−∞ < K1 ∧ g0(y∗) ≤ Ex[g0(X
∗
t∧σn

)] ≤ g0(z∗) <∞,

and hence

lim sup
t→∞

lim sup
n→∞

t−1Ex[g0(X
∗
t∧σn

)] = 0.

Using the same argument, we can show that

lim sup
t→∞

lim sup
n→∞

t−1Ex[ψ(X
∗
t∧σn

)] = 0.

Then it follows that

lim sup
t→∞

lim sup
n→∞

t−1Ex[G(X
∗
t∧σn

)] = 0.

Plugging this equality in (4.7) gives us the desired conclu-
sion F∗ = J(τ∗, Y ∗) and hence completes the proof.



Remark 4.3. Note that the function G given in (3.14)
is not bounded below. Thus it is not clear whether the
transversality condition (4.2) will be satisfied for any
admissible impulse control policy (τ, Y ). However, for the
policies (τ, Y ) satisfying (4.2), Theorem 4.2 says that F∗
is a lower bound for J(τ, Y ) and that the (y∗, z∗)-policy
defined in (4.3)-(4.4) achieves such a lower bound. In
other words, Theorem 4.2 establishes the optimality of
the (y∗, z∗)-policy in the restricted class of policies.

5. Further Remarks
This paper formulated and solved a long-term average

inventory control problem where inventory dynamics is
subject to diffusion and compound Poisson demands. Our
approach extends the methodology previously developed
in Helmes et al. (2017) for the corresponding problem in
the continuous inventory setting, adapting it to account
for the presence of compound Poisson jumps.

Several directions for further research are worth explor-
ing. One important aspect is addressing the limitation of
Theorem 4.2 imposed by the transversality condition (4.2).
For instance, one may extend the comparison theorem for
continuous inventory setting of He et al. (2017) to systems
with jumps, thereby establishing the optimality of the
(y∗, z∗)-policy for all admissible impulse control policies.
Alternatively, a weak convergence approach similar to that
in Helmes et al. (2018) may bypass (4.2).

Extending the model to incorporate more general in-
ventory dynamics could yield valuable insights. For in-
stance, using spectrally negative Lévy processes or jump-
diffusion models may better capture real-world inventory
fluctuations—particularly in industries with heavy-tailed
demand spikes or non-exponential behavior. A further
generalization to regime-switching (jump) diffusion pro-
cesses (Mao and Yuan (2006), Yin and Zhu (2010))
would enable regime-dependent control policies, making
the model even more adaptable to diverse stochastic
environments. These extensions would not only advance
the theoretical framework of stochastic impulse control but
also significantly broaden its applicability to real-world
problems.
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