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Abstract—This paper presents a novel class of cyber security
models based on SIR-type formulation. Our effort is on inves-
tigating optimal impulse controls arising from a cluster owner
under exogenous cyber-attacks. We utilize the SIRS model from
epidemiology to represent the spread of cyber-attacks within the
cluster and evaluate the impact of protective measures. Within
this framework, we determine the optimal defense strategy
against effective hacking by formulating and solving a stochastic
control problem with optimal switching. By employing dynamic
programming principles, we derive a system of quasi-variational
inequalities. Due to the inherent nonlinearity and complexity,
a closed-form solution is not possible. We use a hybrid deep
learning method to approximate the solution by simulating the
optimal protection strategies. Finally, the effectiveness of the
proposed hybrid deep learning method is validated by comparing
it with the deep Galerkin method.

Index Terms—SIR-type model, impulse control, numerical
method, hybrid method, deep learning, stochastic approximation.

I. INTRODUCTION

CYBER attacks have grown increasingly complex and
widespread in recent years. As a result, we face unprece-

dented cybersecurity threats and challenges, including denial-
of-service (DoS) attacks [20], malware [49], ransomware [20],
blackmail [44], extortion [53], and more [11], [28]. Cybersecu-
rity Ventures, a cybersecurity risk investment firm, estimated
that the annual cost of cybercrime will rise to 10.5 trillion
USD by 2025, compared to an estimate of 3 trillion USD by
the World Economic Forum in 2015 [39].

The evolving nature of cyber risk, its potential to become
systemic, and its behavioral characteristics make the quantifi-
cation of cyber risk particularly challenging. Recently, we have
seen significant progress in this area, particularly in insurance
coverage. A foundational contribution was made by [21], who
proposes a mathematical model to measure the loss reduction
resulting from technical security investments and determine
the optimal level of investment. Notable contributions related
to insurance coverage include studies such as [4], [16], and
[17]. Specifically, in [18], the authors investigate severe and
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extreme cyber claims using a combination of generalized
Pareto modeling and regression tree methods. As emphasized
by [54], the accumulation and propagation characteristics of
cyber events can be formulated using network models from
epidemiology. Subsequent studies adapted this idea to account
for specific features of cyber risk, as detailed in [25], [26] and
[40]. The article [37] examined optimal investment decisions
in the context of mixed insurance and investment strategies
for managing cyber risk. The response of defense systems to
cyber-attacks was analyzed in [33], where it was modeled as a
stochastic game involving a large number of interacting agents.
A cluster-based method is developed to investigate the risk
of cyber attacks in the continental United States in [38]. In
[24], the authors reviewed cyber risk research across various
disciplines, with a primary goal to aid researchers in the field
of insurance and actuarial science to identify potential research
gaps as well as to leverage useful models and techniques that
have been considered in the literature.

Because of the page limitation, we will not be able to
present all detailed mathematical developments such as con-
vergence proofs and asymptotic studies. Rather, it seems to
be most instructive for us to concentrate on the mathematical
model descriptions and the algorithms we developed. The
mathematical details will appear in a subsequent paper. In
addition, we put emphasis on the examples. Our aim is to
use the examples to illustrate the main ideas.

Our formulation in this paper stems from the well-known
SIR models. Such epidemic models were first introduced by
Kermack and McKendrick in [30], [31]. In recent years, the
study on mathematical models has flourished. Much attention
has been devoted to analyzing, predicting the spread, and
designing controls of infectious diseases in host populations;
see [3], [7], [8], [10], [19], [32], [34], [30], [31], [45], [50]
and the references therein. The SIR (Susceptible-Infected-
Removed) model is suitable for modeling some diseases
with permanent immunity such as rubella, whooping cough,
measles, smallpox, etc. For some of the most recent mathe-
matical developments on SIR models, we refer the reader to
some of our work [14], [15], [41] and references therein. The
formulation begins with the so-called compartment models.
In a SIR model, a homogeneous host population is subdi-
vided into three epidemiologically distinct types of individuals,
namely, susceptible class, the infective class, and the removed
class. Then the spread of infection can be formulated by
using a system of differential equations. Recognizing that
random effect is not avoidable, it more realistic to assume
that a population is subject to random disturbances. Thus
renewed effort has been devoted to finding the corresponding



classification by means of stochastic models. Because of the
importance, substantial effort has been devoted to the SIR
models and their various variants.

In this paper, our focus is on cyber security issues. We
present a novel class of models based on the ideas from
SIR formulations. We illustrate that SIR type of models can
also be used in the study of cyber security related issues.
We aim to address the challenge faced by cluster owners
in balancing the costs of protecting their computer networks
against cyber-attacks, with a particular focus on whether to
regularly update or purchase security software. This involves a
trade-off, where inadequate protection may lead to substantial
financial losses due to cyber incidents, affecting both the
cluster owner and its customers. Conversely, implementing
active protection measures can be very costly. In addition, this
paper models cyber risk using a stochastic epidemiological
SIRS model, where the system switches between different
dynamics based on two factors: the control exerted by the
cluster owner (endogenous switching control) and hacking
activities (exogenous and uncertain risks). In this framework,
we consider an optimal impulse control problem for cyber
risk management. Through dynamic programming principles,
we derive a system of quasi-variational inequalities. Due to the
inherent nonlinearity and complexity, no closed-form solution
appears to be possible. As a viable alternative, we use a hybrid
deep learning method to approximate the optimal strategy of
a cluster owner. The effectiveness of the proposed method
is demonstrated through a comparative study with the deep
Galerkin method [46] in two specific scenarios: one with a
constant attack and the other with Poisson attacks.

Recently, machine learning methods have been developed
to handle cyber risk management; see, for example, [6],
[22], [23], [42], [47], [48], and [51]. As seen in the recent
years, deep learning and reinforcement learning are becoming
increasingly popular in the field of risk management. In [52],
the authors investigated network attacks related to intrusion
detection, highlighting the limitations of existing datasets and
suggesting future research directions for model development.
Machine learning and deep learning methods for securing
Internet of Things (IoT) technology were reviewed in [2].
In [5], the authors provided a comprehensive overview of
various network attack types and offered an in-depth dis-
cussion on attack detection methods using deep learning
techniques, including convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and generative adversarial
networks (GANs). Relevant literature on the application of
reinforcement learning in cyber security includes [1], [12], and
[43], among others. We remark that the deep-learning methods
are deeply rooted to stochastic gradient methods and more
generally to stochastic approximation; see Kushner and Yin
[36] for a comprehensive treatment.

The main contributions of this paper are as follows. Unlike
the controlled stochastic Kolmogorov systems considered in
[55], we focus on an optimal impulse control problem en-
countered by a cluster owner under exogenous cyber-attacks.
Although the epidemiological SIRS model used in our work

represents the spread of cyber-attacks within the cluster bears
that resemblance to the one in [27], our focus is on employing
a hybrid deep learning Markov chain approximation method
(see, for example, [13], [29], and [56]), whereas their approach
utilizes the deep Galerkin method. The hybrid feature of
the proposed method lies in an integration of Markov chain
approximation and stochastic approximation algorithm. The
Markov chain approximation method plays a key role in build-
ing iterative algorithms and finding initial values. Stochastic
approximation is employed to search for the optimal neural
network parameters within a bounded region defined by the
Markov chain approximation method. Comparing with the
existing numerical methods on stochastic control problems,
our proposed deep learning algorithm has two main advan-
tages. (1) The use of deep learning enables us to replace
the optimization over the piecewise control grid for every
state value by finding optimal parameters of neural networks
for all state values. In this way, the number of computation
nodes increases linearly with respect to the number of points
in the state lattice. Consequently, the computation efficiency
can be improved; (2) when the ranges of controls and states
are not comparable, computational efficiency and accuracy are
significantly impacted, as selecting an appropriate step size for
the lattice becomes challenging. In contrast, neural networks
enable the control strategy to take values within a continuous
range, overcoming the difficulty of choosing an appropriate
precision in control spaces with significant different scales. As
a result, the accuracy of the numerical results can be improved.

The remainder of this paper is organized as follows. Section
II presents the epidemiological SIRS dynamics used to model
the contagion of cyber-attacks through the cluster. Section
III briefly introduces a framework of the hybrid deep learn-
ing Markov chain approximation method. Section IV gives
two numerical examples to illustrate the effectiveness of the
proposed hybrid deep learning Markov chain approximation
method. Finally, Section V concludes the paper with further
remarks.

II. MODEL

Let (Ω,F ,Ft,P) be a complete filtered probability space,
where {Ft} is a filtration satisfying the usual condition (i.e.,
right continuous, increasing, and F0 containing all the null
sets). Denote by W a one-dimensional Brownian motion,
which is viewed as an uncertainty to determine precisely the
transmission rate of the virus inside the computer’s cluster.

Following [27], we assume that the dynamics of the SIRS
system evolves as dSt = (ρRt − St (atν + Itβ + ptκ)) dt− σItStdWt,

dIt = atνStdt+ βStItdt− Itγdt+ σItStdWt,
dRt = ptκStdt+ γItdt− ρRtdt,

(1)
where (at)t≥0 is the hacker’s strategy, which is a binary
variable taking the value at = 1 if the hacker attacks the
cluster or at = 0 if the hacking is inactive; (pt)t≥0 is the
response of the cluster owner’s to protect its network, which
is also a binary control variable, taking the value pt = 1 if



he/she develops a dedicated protection to this attack or pt = 0
he/she remains with the benchmark level of protection. The
ν > 0 and κ > 0 are the intensity of attack and defense
implementation, respectively.

The hacker’s strategy (at)t≥0 is defined by a binary variable

α̃ :=
(
a0, (τ̃n)n≥0

)
, where a0 ∈ {0, 1} is the initial state

and (τ̃n)n≥0 are the switching times of the attack level, with
τ̃0 := 0. Then the hacker’s strategy (at)t≥0 is defined as

at :=
∑
n≥0

1τ̃2n+1−a0≤t<τ̃2n+2−a0
. (2)

Here, the random times (τ̃n)n≥0 are assumed to be exogenous
random variables, independent of the filtration {Ft}.

In this paper, we assume that the cluster owner can identify
the current attack state at, but is unable to predict the hacker’s
strategy, i.e., the cluster owner is subjected to random switches
in the environment. In each random time interval [τ̃n, τ̃n+1),
characterized by a constant attack level aτ̃n , the cluster owner’s
strategy pt depends on this attack level aτ̃n . From the perspec-
tive of switching times, the cluster owner’s strategy consists
of a sequence of increasing Ft-stopping times (τn)n≥0, which
depend on the random environment of the attack. Then the
cluster owners strategy (pt)t≥0 is defined as

pt :=
∑
n≥0

1τ2n+1−p0≤t<τ2n+2−p0
, (3)

where p0 ∈ {0, 1} is the initial state of protection and (τn)n≥0

are the switching-times of the protection level, with τ0 := 0.

Remark 2.1: The definition of the hackers strategy (2) and
the cluster owners strategy (3) connects the attack (protec-
tion) switching pattern to the initial state, meaning that the
subsequent attack (protection) periods and switching times
are determined by whether the attack (protection) has been
initiated. Additionally, it ensures that the attack (protection)
states alternate throughout each time period. Specifically, we
assume that the hacker constantly attacks the cluster, that is
τ̃n =∞ for any n > 1 and a0 = 1. For more details of hackers
strategy and cluster owners strategy, we refer the reader to
[27].

To proceed, let Ap(α̃) be the set of admissible switching
control of the cluster owner for a given strategy α̃ of the
hacker. For a protection strategy α ∈ Ap(α̃), the dynamics

of the system are given by

Sα,α̃t = s0 +

∫ t

0

ρRα,α̃s ds−
∫ t

0

Sα,α̃s Iα,α̃s (βds+ σdWs)

−
∑
τn≤t

∫ τn+1∧t

τn

Sα,α̃s κpsds−
∑
τ̃n≤t

∫ τ̃n+1∧t

τ̃n

Sα,α̃t νasds,

Iα,α̃t = i0 +

∫ t

0

Iα,α̃s

(
(βSα,α̃s − γ)ds+ σSα,α̃s dWs

)
+
∑
τ̃n≤t

∫ τ̃n+1∧t

τ̃n

Sα,α̃t νasds,

Rα,α̃t = r0 +

∫ t

0

(
Iα,α̃s γ − ρRα,α̃s

)
ds

+
∑
τn≤t

∫ τn+1∧t

τn

κpsS
α,α̃
s ds,

S0 = s0, I0 = i0, R0 = r0.

In this paper, an exogenous strategy α̃ of the attacks is fixed, and
we focus on deriving the optimal response strategy for the cluster
owner, i.e., given initial state (s0, i0) and regime p0, the cluster owner
chooses an admissible switching control α = (τn)n≥0 ∈ A

p(α̃) that
optimizes the following criteria for the cluster owner

vα̃ (s0, i0; p0)

= inf
α∈Ap(α̃)

E
[ ∫ +∞

0

e−δt
(
cII

α,α̃
t + f(Sα,α̃t , pt)

)
dt

+
∑
n≥1

e−δτngpτn−1
,pτn

]
,

(4)

where f(s, p) = cV κsp is the cost of the protection, cV is the
marginal cost of the protection, cI is the marginal cost of the infected
device, and g0,1, g1,0 > 0 are fixed switching costs.

Now, we define the operator La,p as

La,pv(s, i; a, p) := (ρ(1− s− i)− s(pκ+ aν + βi))∂sv

+ (aνs− γi+ βsi)∂iv +
σ2

2
s2i2 (∂ssv + ∂iiv − 2∂isv) .

For any p, a ∈ {0, 1}, we derive the following system of variational
inequalities

min [−δv(s, i; a, p) + La,pv(s, i; a, p) + cI i

+f(s, p), v(s, i; a, p̄) + gp,p̄ − v(s, i; a, p)] = 0,

on the set D :=
{

(s, i) ∈ [0, 1]2, s+ i ≤ 1
}
,

(5)

where we define p̄ by p̄ = 0 if p = 1, or p̄ = 1 if p = 0.
In what follows, our objective is devoted to employing a hybrid

deep learning method to solve the equation (5).

III. HYBRID DEEP LEARNING METHOD

In this section, we outline briefly the Markov chain approximation
method proposed in [35]. Based on this method, we will introduce
the hybrid deep learning method developed by [13] and [29].

A. Markov chain approximation method
In this subsection, we construct transition probabilities of the

Markov chain approximation method to establish an iterative com-
putational scheme. Let h > 0 be a step size, and {ξhn, n ∈
Z+} be a discrete-time controlled Markov chain with state
space Sh, where Sh is the h-grid of R2 defined by Sh :={

(k1h, k2h)> : ki = 0,±1, . . . , i = 1, 2
}

. Let αh = (αh0 , α
h
1 , . . . )

be the sequences of random variables that are the control actions at
time 0, 1, . . . . Denote by Ph ((y,z) |α ) the probability that ξ transits



from state y to state z with α ∈ Ap(α̃). We say that αhn is admissible
if it satisfies the following conditions:

(a) αh is σ
{
ξh0 , . . . , ξ

h
n, α

h
0 , . . . , α

h
n−1

}
-adapted.

(b) For any x ∈ Sh, we have

P
{
ξhn+1 = x | Fhn

}
= P

{
ξhn+1 = x | ξhn, α

h
n

}
= Ph

(
(ξhn,x) | αhn

)
,

where Fn := σ
{
ξh0 , . . . , ξ

h
n, α

h
0 , . . . , α

h
n

}
.

(c) For all n ∈ Z+, ξhn ∈ Sh.
To simplify the notation, we denote

x := (x1, x2)> := (s, i)>,

A := ρ(1− s− i)− s(pκ+ aν + βi),

B := aνs− γi+ βsi,

C :=
1

2
σ2s2i2.

Based on the notation mentioned above, we can discrete Equation (5)
using finite difference method with the stepsize h. As a result, the
transition probabilities of Markov chain approximation method are
constructed as follows

Ph (x,x± he1 | α) =
A±

h
,

Ph (x,x± he2 | α) =
B±

h
,

Ph (x,x+ he1 + he2 | α) = Ph (x,x− he1 − he2 | α) =
C

h2
,

Ph (x,x | α) = 1− |A|
h
− |B|

h
− 2C

h2
.

(6)
Using the above constructed Markov chain (6), for a given control
strategy α, we can define the change of objective value as

S(x, v, α) ≈
∑

y∈Sh

v(y)Ph(x,y | α) + cI i+ f(s, p).

The optimal control strategy and value function are given by

v(x) = inf
α∈Ap(α̃)

S(x, v, α), α∗ = arg inf
α∈Ap(α̃)

S(x, v, α).

B. Deep learning Markov chain approximation method
Here, we present the hybrid deep learning Markov chain approx-

imation method. Within the framework of deep learning method,
the control variable is approximated using neural networks and
evaluated in a lattice structure. Let Θ be the set of all weights
and biases in neural networks, and N(x|Θ) be the neural network
control. For simplicity, we assume that the state variable’s range is
discretized into n points for the neural network setup, such that
the state variable is approximated by {xi}ni=1. Given the state
lattice {xi}ni=1, we define the global improvement function G as
G := G (v(x1), v(x2), . . . , v(xn)). For more details of the global
improvement function G, we refer the readers to [13] and [29].

To proceed, let θhk and N
(
x, θhk

)
be the k-th iterative optimal

parameters and control strategy, respectively. The system of dynamic
programming equations in the k-th iteration follows

vk (xi) = S
(
xi, v

k−1, α̂k (xi)
)
, 1 ≤ i ≤ n,

where vk−1 is an iterative value function obtained from the previous
iteration, and α̂k(x) = N

(
x|Θk

)
. Here

Θk = arg min
Θ

G
(
Sk (x1) , Sk (x2) , . . . , Sk (xn)

)
,

Sk(x) = S
(
x, vk−1, N(x|Θ)

)
.

C. Algorithm summary

With the implementation details explained above, the pseudo-
code of the proposed hybrid deep learning method is summarized
in Algorithm 1.

Algorithm 1 Framework of the hybrid deep learning method
Input:

The state lattices for deep learning algorithm, {xi}ni=1;
The state lattices for Markov chain approximation method,
{yj}n

′

j=1;
The initial values of value functions, U0(yj) and v0(xi);
The set of computation precision, ε;
The maximal number of learning times, Ñ ;

Output:
The approximation of optimal control N(xi, θk);

1: Obtain the optimal control α̂k(yj) by Markov chain
approximation method;

2: Obtain the initial value of the parameter θk,0 by

θk,0 = argminθ

n′∑
j=1

(
‖α̂k(yj)−N(yj , θ)‖

)2
;

3: Obtain the iterative control strategy by minimizing G by
SGD method;

4: Iterate the value function Uk(yj) by Uk(yj) =
S
(
yj , U

k−1, N(yj , θk)
)
;

5: Iterate the value function vk(xi) by vk(xi) =
S
(
xi, v

k−1, N(xi, θk)
)
;

6: while k < Ñ do
7: if

∑n
i=1

(
vk(xi)− vk−1(xi)

)2
< ε then

8: Stop;
9: else

10: Go to Step 1;
11: end if
12: end while
13: return N(xi, θk);

IV. TWO NUMERICAL EXAMPLES

In this section, we demonstrate the proposed algorithm under two
attack scenarios: (1) A constant attack of the hacker; (2) Exogenous
attacks switches given by a Poisson process.

A. Case 1: A constant hacker attack

In this section, we apply the deep learning Markov chain ap-
proximation method to solve a specific scenario involving a constant
hacker attack with a = 1. Following [27], we assume that the time
period is T = 30, the time step is h = 0.125, the contagion rate
is β = 0.04, the recovery rate is γ = 0.02, the replacement rate is
ρ = 0.002, the intensity of the attack is ν = 0.05, the volatility of
the SIRS system is σ = 0.2, the actualisation parameter is δ = 0.2.
We begin with only susceptible devices and no corrupted devices,
with initial conditions S0 = 1, I0 = 0. In addition, we assume
the efficiency of the protection is κ = 0.03, the marginal cost of
protection is cV = 0.05, the marginal cost of infected device is
cI = 0.01. The switching costs are given by g01 = 0.001v(s, i, 1, 0)
and g10 = 0.001v(s, i, 1, 1). As for the part of deep learning method,



the number of hidden layers is 2, the number of vertices in each layer
is 20, and the learning rate is 10−4.

Triggering Error Max # of steps
Control Fit 10−3 10000
Gradient Descent 10−5 5000
Global Iteration 10−6 50000

We apply the deep learning Markov chain approximation method
and get one path of S, I without protection and with optimal
protection in Figure 1. As illustrated in Figure 1, the cluster owner
initially refrains from strengthening the system’s protection until
t = 9.29 (the first green vertical line). Given that the cost of infection
is higher than the cost of switching the protection system, the cluster
owner chooses to implement protective measures at this point to
mitigate the cost of further infections. Subsequently, at t = 22.37
(the second green vertical line), the cost of maintaining protection
becomes prohibitively high, prompting the cluster owner to reduce
the protection level from p = 1 to p = 0 in order to lower protection
costs. By alternating between protection states, the cluster owner
effectively keeps the number of damaged devices low at t = 30, in
contrast to the outcomes observed under the no-protection strategy.
Throughout this process, the cluster owner manages the number of
infected devices (represented by the yellow curve) more efficiently
than in the scenario with no protection (represented by the blue
curve). Consequently, the number of susceptible devices that have not
been compromised by the attack (depicted by the red curve) decreases
at a slower rate compared to the no-protection strategy (represented
by the pink curve). This observation is consistent with the findings
presented in [27].

Fig. 1. Optimal trajectory of S and I with protection and switching v.s. no
protection strategy. Case 1: A constant attack.

B. Case 2: Exogenous Poisson attacks
We now consider a scenario where the initiation and termination

of attacks follow a Poisson process with intensity λ = 0.1. Following
[27], the system is assumed to start at time 0 under an active attack
(a = 1) and without any protective measures (p = 0). The protection
efficiency is set to κ = 0.02, with the marginal cost of protection
given by cV = 0.04 and the marginal cost associated with infected
devices being cI = 0.01. The switching cost for activating protection
(from p = 0 to p = 1) is defined as g01 = 0.01v(s, i, a, 0), while
the cost for deactivating protection (from p = 1 to p = 0) is g10 =
0.001v(s, i, a, 0), for all a ∈ {0, 1}.

We employ the hybrid deep learning algorithm to simulate the
trajectories of S and I under both protection and non-protection
strategies, with the results illustrated in Figure 2. It is observed
that the cluster owner initially permits the attack to propagate and
postpones the activation of the protection mechanism until time

τ̂1 = 7.15 (first pink dotted vertical line). This delayed intervention
is primarily due to the relatively high switching cost of initiating
protection compared to the marginal cost of infection in the early
stage. At time τ̂1 = 7.15, the protection mechanism is activated.
The attacker subsequently disengages at τ̃1 = 13.20 (first blue
dotted vertical line). Despite the cessation of the attack, the cluster
owner maintains the protection regime to further mitigate the resid-
ual infection risk within the network. The protective measures are
eventually withdrawn at τ̂2 = 19.10, shortly before the onset of
the next stochastic attack at τ̃2 = 22.35 (last blue dotted vertical
line). Notably, the protection mechanism is not re-engaged after the
second attack occurs, suggesting that the adopted switching strategy
effectively balances containment of the infection and control cost,
thereby avoiding unnecessary protective actions while maintaining
system resilience.

Fig. 2. Optimal trajectory of S and I with protection and switching v.s. no
protection strategy. Case 2: Poisson attacks.

V. CONCLUSIONS
This paper addresses the optimal impulse control problem encoun-

tered by a cluster owner in the context of exogenous cyber-attacks,
utilizing the epidemiological SIRS model to represent the propagation
of attacks within the cluster and evaluate the impact of defensive
measures. We formulate the problem as a stochastic control problem
with optimal switching, resulting in a system of quasi-variational
inequalities. Due to the inherent nonlinearity and complexity of these
inequalities, we employ the hybrid deep learning method to obtain
their solutions. Two specific scenarios are presented to demonstrate
the effectiveness of the proposed method, which is further validated
through a comparison with the deep Galerkin method.
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