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Abstract— The noise in control systems was studied based on
data from several hundreds of control loops operating in differ-
ent process industries located in several sites all over the world.
That data showed that the theoretical assumption of Gaussian
properties for the data is hardly ever satisfied. This paper
will focus on some illustrative examples of stochastic models
with non-Gaussian noise and will present the evolution process
in using stochastic processes that include fractional Brownian
motion processes, Rosenblatt and Rosenblatt—Volterra processes
as a replacement of commonly used ordinary Brownian mo-
tions. Theoretical advancements will demonstrate challenges
and fascinating opportunities in them for developing the models
that meet the expectations of industrial practitioners.

Index Terms— control system; uncertainty modeling; non-
Gaussian noises; Rosenblatt process; Brownian motion

I. INTRODUCTION

Virtually, no control system is completely insulated from
the environment and external influences. These influences
might be recognized, interpreted and taken into account
in many different ways. Actually, this issue is still un-
derestimated without being sufficiently understood whether
in research or education. Historically in 1921, F. Knight
presented the theory of uncertainties [1]. He pointed out that
there exits the thin line separating two notions: “uncertainty”
and “risk”. He indicates the two types of uncertainty around
us. The first one we can measure and than we call it “risk”,
while the second one cannot be determined (measured) and is
names as a true “uncertainty”, which is “pure and untainted”.
Uncertainties always exist, though often remain unnoticeable.
If we are seriously impacted by them, we are forced to take
them into account. If their impact is minor on undetected, we
just ignore them. However, we mustn’t confuse disturbance
with uncertainty, as the consequence can be devastating.

Once the disturbance has known distribution, we may a
priori know it, analyze and evaluate the associated risk.
While it’s statistical, it has an unknown distribution, but
we can estimate it. In the worst case, the uncertainty is
unclassified, has no distribution and therefore we may only
observe its effects. From the research point of view the
second case seems to be the most attractive.

The design of a given control system has to consider the
disturbance investigation, and their active consideration. We
must assess their impact on the achievable performance. The
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very fact of identifying their existence is a success. Once
we are able to estimate their properties, we can propose
an appropriate robust and resilient solution, like filtering,
decoupling, or rejection. Generally, we observe two kinds
uncertainties in control systems.

We can consider some of them as a kind of interference of
unknown properties impacting the process, the most often of
an external origin. We don’t know when and how they occur,
in what direction they change and with what magnitude.
Most often we classify them as disturbances. However, they
also exist in a context of noises. Noise is often considered
as an internal phenomenon. We can model it as a stochastic
process, like a thermal effects in sensor, “added” to the true
information. The worst situation we may face is when we
cannot distinguish true signal from the noise. Once the noise
is known, we may take it into account, and properly design an
adequate solution to mitigate its impact. Thus, the knowledge
and investigation of noises matters a lot.

Noises in control system are modeled as the Gaussian
normal process. It’s well established tradition starting from
Wiener deliberations on so called fire control during World
War 2 [2], and widespread with works of Kalman on optimal
control [3] and filtering [4]. The assumption about noise
Gaussian properties is justified by its theoretical clarity
and analytical vulnerability. Gaussian process has clear and
compact formulation with all moments existing. Its incor-
poration in theoretical control system evaluations allows
to use simple analytical solutions. The reason is also due
to the Central Limit Theorem and an understanding that
measurement noises exhibit normal properties.

Despite all the tradition and existing solutions developed
using this assumption, analysis of actual industrial control
systems does not support such an assumption. Reviews of
large industrial datasets shows that only small number, =~ 6%
of the loops meet normal properties [5]. Majority of signals
exhibits heavy tails, which cannot be properly modeled by
Gaussian probabilistic density function.

Incorrect choice of the noise underlying stochastic process
may lead to wrong, mostly to the too optimistic interpreta-
tions, as in case of the estimation of benefits from control
rehabilitation [6]. It’s due to the fact that normal moments
estimators exhibit 0% breakdown point [7] due to outlying
observations hidden in heavy tails. Second moment for such
data overestimates its value, what causes wrong decisions.

Existence of outliers and heavy tails requires stochastic
tail-aware solutions [8] or alternative measures [9]. One ap-
proach is to use robust statistics [10], which allows to model
the peak and shoulders of the distribution neglecting tails.



Another approach is to use heavy tailed distributions as an
underlying noise model. The family of a-stable distributions
seems to be a natural selection [11], as normal function is its
special case. Stable functions have four parameters, i.e. the
shift, scale and two shape factors, which allow to model the
broad range of skewed and tailed distributions. One can use
simple, t-Student distribution [12], which effectively allows
to model tailedness.

Recent research shows that Rosenblatt process [13] may
be effectively applied to model noises in control engineering
applications [14]. This paper investigates these opportunities.

II. HOW TO CAPTURE CONTROL NOISE?

Modeling of the industrial control noise is not such simple
as it appears in textbooks. First of all, we have to find
it and this task is not easy. The noise is hidden in time
series of control variables. The most often we look after it
in the controlled (process) variable or in control error. These
signals are composed of many elements, like static trends (for
instance due to setpoint changes), artificial manipulations due
to human interventions, oscillatory components of various
frequencies and amplitudes, system or sensor based artifacts
(external outliers), and finally the noise itself. Decomposition
of time series to get the real noise is tedious and custom task,
dependent on expertise and process knowledge. During these
activities we shouldn’t make any unjustified assumptions as
they may alter the results. Especially, we mustn’t assume any
specific noise character.

Once the signal is decomposed and we obtain a component
which we believe is noise, we can model it. At first we should
make its visual inspection. Fig. 1 presents time series trend
of sample noise signal. The review should be followed by
the stationarity testing For that we may use a combination of
an augmented Dickey—Fuller test (ADF), which tests the null
hypothesis that a unit root is present in data sample [15] and
Kwiatkowski—Phillips—Schmidt—Shin (KPSS) test to check
if data is trend-stationary or has a unit root [16]. Once time
series is trend-stationary we may consider its differencing
before further analysis. Next we should start the analysis
of it statistical properties. Good practice is to start from
histogram drawing. Even its simple visual review may deliver
valuable information. Fig. 2 shows respective histogram plot.
Histogram analysis should be supported by the evaluation
of basic statistical factors, like its minimum and maximum
value, mean p and median, Q1 and Q3 quartiles and a
boxplot (see Fig. 1).
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Time series trend and the boxplot for sample data

Basic statistics might be supported by classical moments,
i.e. standard deviation o, skewness ~3 and kurtosis ~y4. Addi-
tionally good practice suggest to evaluate MADAM (Median
Absolute Deviation Around Median) and IQR (InterQuartile
Range) scale factors. They might be supported by robust
mean fio; and scale estimators oo (in this example logistic
M-estimators) and L-moments [17]: L-scale I, L-covariance
T9, L-skewness 73 and L-kurtosis 74. Table I presents these
factors calculated for sample data.
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Fig. 2. Histogram plot for sample data

TABLE I
SAMPLE DATA - BASIC STATISTICS

min max I median Q1 Q3
-1.111 0.891  0.002 0.002 -0.088  0.089
o MADAM IQR Y3 Y4
0.150 0.088  0.087 -0.078 6.636
lo T2 T3 T4 Hlog Olog
0.081 34.653  0.008 0.176 0.002  0.133

Histogram plot might be used to select a probabilistic den-
sity function (PDF) that fits the data in the best way. Fig. 2
shows such fitting using the most appropriate candidates:
normal Gaussian and its robust counterpart, double expo-
nential Laplace, heavy tailed t-Student, which incorporates
one shape factor and a-stable function that uses two shape
coefficients: stability factor o representing tails and skewness
5. Histograms allow to see fitting efficiency in each sector:
peak, shoulders or tails. Fitting may be also visualized using
quantile Q-Q plots as shown in Fig. 3. The plot may be
also used to calculate fitting efficiency and to select the best
function. In this case we see that a-stable function exhibits
the best fitting and might be used as a noise model.

At that point we may conclude that the noise might be
modeled by the random number generator using properly
selected distribution. However, such a modeling looses one
feature: the time dependence and causality relationship. The
PDF is static. Each generated value is independent. Real
noise might be like that. But generally, it can be generated by
some unknown fundamental process, which output exhibits
certain probabilistic properties. Therefore, it would be good
to have possibility to choose between static, independent
realizations and time driven fundamental process. Once the
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Fig. 3. Quantile Q-Q plot for sample data

process hypothesis is in place the modeling should use the
statistical results leading toward the determination of proper
fundamental process, like for instance fractional Brownian
motion, Rosenblatt or Rosenblatt - Volterra processes.

A. Comments

The model of Brownian motion is typically justified by a
Central Limit Theorem and an assumption of independence
of the noise increments. However, typically data are not
studied to justify either of these conclusions from real data.
There is a wholesale acceptance of the naturality of a Gaus-
sian assumption for the variation of an arbitrary collection
of empirical data. Even more so no justification is given
in a fundamental sense for the independent increments of
the data that is basic to a Brownian motion model. In this
paper an empirical analysis was used from physical data from
interconnected control systems throughout the world. This
analysis showed that the Gaussian assumption is hardly ever
satisfied.

Thus, it is necessary to consider other noise models.
In this paper an alternative noise model is chosen that is
called Rosenblatt processes named after the statistician who
introduced them [18]. There is a stochastic calculus associ-
ated with this family of processes which makes it feasible
for applications to model physical system noise especially
those cases where Brownian motion has traditionally been
used. Some control system applications of optimal control
are briefly described. Some references are provided for the
foundations to control applications.

III. ROSENBLATT PROCESSES

To introduce Rosenblatt processes precisely, let (u)y =
max{u,0} be the positive part of v and hi’ and hil be
given as

: (1)
)

that are two singular kernels defined on the real line. These
two kernels are used to define fractional Brownian motions
and Rosenblatt processes as follows.

hi'(u,y) = (u—y);

H g1 1
hy' (u, y1,y2) = (u — y1)+ (u— y2)+

Definition IIL.1. Let H € (1/2,1) be fixed. A real-valued
fractional Brownian motion, By = (Bg(t),t € R), is
defined as follows

Bult) = CF [

R

t

< / hy! (u,y)dU> dw (y) 3)
0

for t > 0 (and similarly for ¢ < 0) where CZ is a

constant given below such that E(B% (1)) = 1 and W is

a standard Wiener process (Brownian motion) on a fixed

complete probability space denoted (2, F,IP) which is used
throughout this paper.

Definition IIL.2. Let H € (1/2,1) be fixed. A real-valued
(standard) Rosenblatt process, Ry = (Ru(t),t € R), is
defined as follows

t
Rir) = [ ([ 1 G, ) i )anv )
for t > 0 (and similarly for ¢ < 0) where C’g is a constant
such that E(R?,(1)) = 1, and the double stochastic integral
is a Wiener-Itd multiple integral of order two with respect
to the Wiener process (standard Brownian motion) W. This
double Wiener integral is the definition given by Itd so the
integral has expectation zero [19] in contrast to Wiener’s
original definition.

A. A Change of Variables Formula

Anyone who has developed models for control and filter-
ing knows the importance of a change of variables formula,
often called the It6 formula. Similarly a change of variables
formula is basic for the analysis of systems with a Rosenblatt
noise process. This change of variables result is described
now.

A change of variables formula is important in this case
as it is for a Brownian motion noise control problem. To
describe a change of variables formula let (y(t),t > 0) be
a real-valued stochastic process that satisfies the following
stochastic differential equation where y(0) = yo and Ry is
a Rosenblatt process with parameter H.

dy(t) = 9(t)dt + dRpy (t)

If some natural conditions are satisfied for every 7' > 0,
then the process (Y;);>o defined by Y; = f(¢,y:) satisfies
the following stochastic equation that is verified in [13].

t N t H 1 t _

Y, :y0+/ 19sds+2cf,ﬂ/ psdBy3 "2 +/ PydRY
0 0 0

for every ¢t > 0 where
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+ Cgaié(svys)(VT’?ysxsv 5)
R83f q 2
e () (VE ) (),
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B. Linear prediction problem

Now some linear prediction problems for Rosenblatt pro-
cesses are formulated and solved. This approach for the
linear prediction problem was suggested by one of the
referees. Let h be a positive continuous function on the real
line. Find the optimal linear predictor of fo hdRy based on
the past ( f hdRp,—s < u < v < 0). There is the following
result.

Theorem IIL.3. Fix ¢ > 0. The optimal linear prediction of
the random variable fo hdRy for h given above based on
the history f hdRpy,—s < u < v < 0) for some s >0 is
given by

0
RH@):l/ i(2)dRy () 4

where

yH- 3 -3z
/ (v + S) dy, = € (-s,0). 5)
0

Proof. Recall that the optimal estimator arises from the

orthogonality property
0 .
[ awa ([ nana) @)

E ( /O B AR () —
< L vh(r)dR;;(r)) ~0. 6

It is basic to determine the optimal linear estimator to find
the function g where

i0)=G(Z) @) acs0 0

G(z) := —C(H)—lxé—HdC}E/xl (521{—1(6 —x)%_H

d [¢ . ,
dif/o nZ‘H(E—n)fHF(n)dn) d¢  (8)

with the constant ¢(H) defined by

c(H) := 2cos (;m - 2H)) [(2H —1)T (3 - H>2

2
©)
and with the function F' defined by
t
F(y) =1 [ by e,y 0.1) 10)
0
and

The expression here for the optimal linear estimate is
analogous to the prediction result for a fractional Brownian
motion.

O

For a scalar constant coefficient linear differential equation
given by

dX (t) = aX (t)dt + dRy (t) (12)
the solution is
t
X, = X, +/ ARy (r), t>0, (13)
0

One has an analogous solution for the optimal linear
estimator given the observations (X (u),u € (—s,0)) as
follows

0
X, = e Xy + e‘”/ Geap(r)d(e™ " X4)(r) (14)
where
Geap(T) 1= € Gegp(—2x/s), z€(—s,0) (15)

1
Gep(z) = _C(H)_lx%_H%/x (§2H—1(€ _ x)%_Hdif

§ 1
Az(ﬁmH%mw%ww

The term ¢(H) is given above and

t
Feap(y) = SHH/ e (x4 sy)*da,
0

€ (0,1). a7

This result reduces to the linear prediction for the Rosen-
blatt process.

A prediction problem solution is given for a Rosenblatt
process. Recall that Ry denotes the Rosenblatt process in
an interval on the real line. A well known problem for many
stochastic processes is prediction. Here a result is given for
the prediction of a Rosenblatt process that is described in
the following theorem.

Theorem IIL4. Fix t > 0. The optimal linear predictor of
Ry (t) given (Ry(s),u < s<0), is

0
2
where
1 1
g(2) = —sin(n(H - 3))|zl|> (s +a))z=
t, H-1 H
y Ty +s)
dy, 19
| 9

with x € (—s,0).

This result is verified elsewhere.



IV. CONCLUSION

The modeling of industrial disturbances remains an or-
phan, or forgotten issue. We make some assumptions in
control engineering, which are suitable for our analysis, but
are hardly justified by an industrial practice. Observation
of the literature simulations shows that process disturbances
are generally modeled as steps, or a periodic rectangle or
sinusoidal wave, added to the controller output before the
process. Measurement noises are often added to the process
variable (process output) and are almost always modeled with
a normal Gaussian noise N (0, 0?) with zero mean value and
variance o2

In majority, the research does not go beyond the above.
A review of real data reveals a much greater richness of
disturbances. In addition to step changes or oscillations, in
most cases we are dealing with non-Gaussian stochastic
processes. We observe definitely non-Gaussian behavior,
often asymmetric with long or heavy tails.

Disturbances are very often not independent processes,
indicating persistent or non-persistent properties. Long-range
memory in signals is no exception and nonlinearities are
more common rather than rarer. It is also worth remembering
that process disturbances are very often non-stationary, if
only because of changes in operating points.

Thus, to be able to design control systems well, we
should not only concern ourselves with modeling the actual
processes, but also the disturbances that affect it. Only then
will our model of reality become complete, and the reliability
of our control system design and the resulting strategy itself
will be fully adequate.

This paper takes a first step in this direction, proposing the
Rosenblatt process as a potential stochastic model to better
represent industrial reality.
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