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Abstract—The paper is concerned with stochastic approxima-
tion algorithms. Our main effort is focused on recently developed
set-valued stochastic approximation methods. We begin with
a brief introduction on stochastic approximation. Next, recent
results are reviewed. Then the rest of the paper concentrates on
applications of stochastic applications of set-valued problems.

Index Terms—stochastic approximation, stochastic optimiza-
tion, recursive algorithm, set-valued analysis, convergence, rate
of convergence, stochastic inclusion.

I. INTRODUCTION

EVENTY-FIVE years have passed since the stochastic

approximation (SA) methods were introduced by Robbins
and Monro in their pioneering work [22], which was named
RM algorithm later. During the years, significant progress has
been made in the study of such stochastic recursive defined
algorithms. The development of SA has been always tied-up
with real applications, especially various forms of stochastic
optimization problems, as well as control, signal processing,
image processing, pattern classifications, and a wide range
of applications in related fields. The original motivation of
Robbins and Monro stems from the problem of finding roots of
a continuous function f(-), where either the precise form of the
function is not known, or it is too complicated to compute; the
experimenter is able to take “noisy” measurements at desired
values, however. A classical example is to find appropriate
dosage level of a drug, provided only f(x)-+noise is available,
where x is the level of dosage and f(x), assumed to be an
increasing function, is the probability of success (leading to
the recovery of the patient) at dosage level x. The classical
Kiefer—Wolfowitz (KW) algorithm introduced by Kiefer and
Wolfowitz the concerns the minimization of a real-valued
function using only noisy functional measurements. In both
RM and KW algorithms, the main concerns of the theoreti-
cal issues focus on analysis of iteratively defined stochastic
processes and a wide variety of applications focus on the
basic paradigm of stochastic difference equations. Much of
the development has been originated from a wide range of
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applications in optimization, control theory, economic systems,
signal processing, communication theory, learning, pattern
classification, neural network, and many other related fields.
Owing to its importance, stochastic approximation has had a
long history and has drawn much attention in the past five
decades. A number of monographs have been written; each
of them has its own distinct features. To mention just a few,
we cite the books of Albert and Gardner [1], Wasan [30],
Tsypkin [29], Nevel’son and Khasminskii [20], Kushner and
Clark [16], Benveniste, Métivier, and Priouret [6], Duflo [11],
Solo and Kong [25], Chen and Zhu [9], and Kushner and Yin
[17] among others.

In fact, stochastic approximation methods have been the
subject of an enormous literature, both theoretical and ap-
plied for five decades. Due to the vast amount of literature
accumulated, it is very difficult or virtually impossible to
provide an exhaustive list of references on stochastic approx-
imation. The development of the stochastic approximation
methods can be naturally divided into several periods. To
put things in the historical perspective, we mention some of
the works on stochastic approximation in what follows. The
early development around 1950’s and 1960’s used mainly basic
probabilistic tools and traditional statistical assumptions (such
as independent and identically distributed noise) together with
certain restrictions on the functions (such as assuming f(x)
to be increasing for instance).

A. Basic Setup

This work aims to present some applications of very recent
results on stochastic approximation and from new angles. Our
main concerns are that the dynamics of the systems involved
are not necessarily smooth or even continuous. In lieu of the
set up of working with vector-valued iterations, we examine
set-valued processes. Technically it becomes more challeng-
ing. In the study of stochastic approximation, we normally
show the convergence of the algorithms by showing that
suitably interpolated sequences converge to a deterministic or-
dinary differential equations (ODEs). The rates of convergence
was studied by showing suitably scaled and centered sequences
converge to stochastic differential equations. Although there
were some early results on replacing the ODEs by differential



inclusions when set-valued process were considered, little was
known for the related rates of convergence. Our recent results
[21] obtained stochastic differential inclusion limits so as to
substantially generalized the existing literature.

Precisely, a stochastic approximation algorithm has the form

Xn+1 =X, +a,b, (Xna gn) + anﬁna (L1)

where {a,}’s are step sizes satisfying a,, € Rt a, — 0,
and ) a, = oo, the sequence {,} is a noise process,
and {3,,} represents the bias. If the sequence b,(+,&,) and
its associated “noise averaging-out” function are continuous,
the asymptotic properties of the algorithms have been well-
understood, see e.g., [15], [16], [17], [18], [19] and references
therein.

Motivated by optimization problems with non-differentiable
loss functions and the search for zero points of set-valued
mappings perturbed by random noise, [21] initiates the study
of stochastic approximation in the context of discontinuous
dynamics and set-valued mappings within a general and uni-
fied framework. Furthermore, new techniques are introduced
for analyzing algorithms involving set-valued analysis and
stochastic differential inclusions. By allowing the functions
b, (+,-) to be discontinuous and belong to a set-valued map-
ping, the work in [21] opens new avenues for applying
stochastic approximation beyond optimization problems to a
broader range of fields. As an example of practical algorithms
of (I.1) in this discontinuous setting, consider the sign-error
algorithm [31] frequently used in adaptive filtering, which uses
the sign operator to reduce the computational complexity:

9n+1 = 971 + ansanign(yn - (,D,Ien)

Another example is the stochastic version of sub-gradient
descent algorithm for stochastic optimization problem with
non-differential loss function often used in support vector
machine (SVM) classification problem:

Wnpt1 = Wy — Ap AW, + a’n,gn(wna Xn, yn)a 1.2)

where g, (Wy, X, yn) € O(-max{0,1 — y,w,x,}), ie.,
{0} if y,w, %, > 1,

gn(wnv Xn, yn) € 4§ co {07 ynxn} if anIXn =1,

{ynxn} if yow, x, < 1.

This work will present applications of our new results in
our paper [21] with focuses on multistage decision making
problem and game theory. The “multistage decision-making
model” examined in this work involves a sequential decision
process where each choice influences the available options
and possible outcomes in future stages. This model holds
significant importance in economics, drawing motivation in
part from Smale’s approach to the prisoner’s dilemma [24],
Blackwell’s approachability theory [7], [26], fictitious play
[8], [23], and stochastic fictitious play [3], [12], [13]. Unlike
many existing studies on multistage decision-making (see, e.g.,
[5] and the references therein), our framework allows the
decision-maker to observe outcomes only partially and under
noise. Additionally, we characterize the limiting processes

as solutions rather than perturbed solutions of the corre-
sponding differential inclusion, while also deriving results on
convergence rates and robustness. This results can be further
extended to accommodate alternative optimality criteria, such
as overtaking and bias, as well as to analyze more complex
systems, including switching dynamical systems.

From another perspective, we investigate applications in
fictitious play, where each player, at each stage of a repeated
game, selects a move that best responds to the past frequency
of the opponent’s actions. In particular, we analyze a two-
player game in which Player 1 has limited information—either
they do not recall their past moves, are unaware of the oppo-
nent’s action set, or are not informed of the opponent’s chosen
moves. We will generalize existing settings by assuming
that players observes environments under noise perturbations.
Then, we investigate its important asymptotic properties.

The organization of the paper is as follows. Section II
present briefly the theoretical results in our previous work
[21], which we will need here. Section III-A studies multistage
decision-making problem with partial observations. Finally, a
two-players game problem is considered in Section III-B.

II. THEORETICAL RESULTS

This section is devoted to presenting briefly theoretical
results in our previous paper [21]. Let t¢ = O, ¢, :=
Z?:_Ol a; for n > 1, and

max {n : t, <t}

may:{o

We define the piecewise linear interpolation X°(¢) of X,, with
interpolation intervals {a,} by X° (t,) := X,,, and

t—1t,

ift >0,
ift <0.

tpt1 — 1
Xo(t) p— LXH +

an n

Xn+1 in (t’rutn-i-l)v
and the shift sequence X" () on (—o0, 00) is defined as

X" (1) := { XO(t+tn)

Xo
We need the following conditions.

it t> —t,,
ift< —t,.

Assumption 1. There is a set-valued mapping G : R? — 2%
satisfying:

(i) There is a finite ball Bs C R? such that G(x) C Bg
for all x, which means G(-) has non-empty, compact,
convex values, and all values are contained in a finite
common ball;

(ii) The graph of G, Graph(G) := {(x,y) e RIxR?:y €
G(x)}, is closed;

(iii) There exists a sequence of positive real-valued functions
{m.(x,&)} continuous in x and uniformly in £ such that

b, (x,£) € G(x) + mu(x,6)B  for all n,x,&,

and that for some 7" > 0, each € > 0, and each x,

m(jT+t)—1

>

i=m(§T)

lim P

n— oo

sup max ai(mi (x,&) + Bi)| > €

j>n t<T

=0.



Under the Assumption 1, by using [21, Theorems 2.2 and
2.4], we obtain the following result.

Theorem I1.1. Consider algorithm (I.1) with Assumption 1.
Suppose that {X,,} is bounded w.p.1.

o Then there is a null set Qy such that Yw ¢ Qg, {X"(-)}
is bounded and equicontinuous on bounded intervals.

o Let X(-) be the limit of a convergent subsequence of
{X"™()}. Then X(:) is a solution of the differential
inclusion

X(t) € G(X(t)) (IL.1)

o The limit set of X(-) is internally chain transitive (with
respect to (II.1)) and the limit points of {X,} are
contained in 'R, the set of chain-recurrent points of (II.1).

e Moreover, let A be a locally asymptotically stable set
(in the sense of Lyapunov) of all solutions of (II.1) and
DA(A) be its domain of attraction. If {X,,} visits the
compact subset of D A(A) infinitely often with probability
1 (resp., with probability > p ), then X,, — A when
n — oo with probability 1 (resp., with probability > p ).

o Assume further that there is a unique X" such that
0 € G(x*); and that there exists a U-generalized
Lyapunov function V : R? — R such that the sublevel
sets {x € R" : V(x) < I} are compact for every | > 0
and the U-generalized derivative V¢ (x) satisfies the
“decay condition” in the sense of [21, Assumption (GS)]
with G*(x) = G(x + x*). Then, X,, — x* wp.1.

Next, consider the case that the noise cannot be averaged
out, that means Assumption 1(iii) does not hold.

Definition IL1. For a set A C R< an e-neighborhood
of A denoted by N.(A) is defined as N.(A) =
{x € R?: distance(x, A) < e}, where distance(x,A) :=
infyca |x —yl.

Utilizing [21, Theorem 2.6] under Assumption 1, we get
the following theorem.

Theorem IL.2. Consider algorithm (I.1) with Assumption 1

(i)-(ii) and let n := limsup,,_, o ||mnl| + |Bn| > 0. Assume
that {X,,} is bounded w.p. 1.

o Then, there is a null set Qo such thatVw ¢ Qq, {X"(-)} is

bounded and equicontinuous. If we let X (-) be the limit of

a convergent subsequence of {X"(-)}, then X(-) is a so-

lution of the differential inclusion X(t) € Na, (G(X(t))).

o There exists a (deterministic) positive function ¢(-) :

[0,00) — [0,00) depending on limsup,, |X,| (resp., the

projection space A) such that lims_,o ¢(t) = ¢(0) = 0

and limsup,,_, . distance (X,,, R) < ¢(n), where R is

the set of chain recurrent points of differential inclusion

X(t) € G(X(1)

Now, to study the rates of convergence, we consider the
following simple algorithm with additive noise

Xn+1 =X,, + a,b, (Xn) + anﬁna b, (Xn) ed (Xn) .
(I1.2)

The following condition is needed for investigating the rate
of convergence.

Assumption 2. (i) The sequence of step sizes {an},~,

satisfies 0 < a,, — 0 as n — oo and (an/anﬂ)l/2 =
1+ &, where (a) &, = 5~ + 0(ey) if a, = 1/n, or (b)
en =0 (an).

There is a limit point x* satisfying the following con-
ditions: (a) X,, — x* w.p. 1 and h (x*) + G (x*) =
{0}; (b) {(Xn, —x*) //an} is tight.

The functions h(-,-) and hy(-,) (gradient with respect
to x ) are continuous in ( X, £ ) and bounded on bounded
x-sets. The second partial derivative (with respect to
X)hyxx(+, &) exists and is bounded uniformly in &, and
hyx(-,§) is continuous in a neighborhood of x*. The
{&n} is a sequence of uniformly bounded and satisfies
certain mixing conditions as in [21, Assumption R], for
a detailed discussion and technical formulation on these
mixing conditions, see [21] and references therein.

The set-valued mapping G(-) has non-empty, convex,
and compact values, which are contained in a finite
common ball such that b,(x) € G(x)Vn. Moreover,
there is a continuous and positively homogeneous set-
valued mapping 7', whose values are non-empty, convex,
compact, and contained in a finite common ball such that
G is outer T-differentiable at x* (see [21, Section A. 5]
for these concepts).

(ii)

(iii)

(iv)

We state [21, Theorem 3.1] for the rate of convergence of
Algorithm (I1.2).

Theorem IL.3. Consider algorithm (IL.2) and assume As-
sumption 2 holds. Let {U™(-)} be the shift sequences of
functions of the piecewise-constant interpolation generated by
the normalized sequence X"% Then {U"(-)} converges
weakly to the solutions of the stochastic differential inclusion

dU(t) € [AU(t) + T(U(t))]dt + 1/ 2dW (1)
if (R)(i)(a) holds, and
dU(t) € [(A+ I/2)U(t) + T(U(¢))]dt + =Y/ 2th)

if (R)(i)(b) holds. Where W (t) is a d-dimensional standard
Brownian motion.

III. APPLICATIONS

We demonstrate here the applicability of the proposed
framework and the results presented in Section II. A nat-
ural application of (I.1) is for optimization of non-smooth
loss functions, which are common in machine learning, as
discussed in [21]. Here, however, we go beyond standard
optimization problems and focus on applications in multistage
decision-making under partial observations and two-player
games in game theory. The applications presented below
highlight two main contributions. First, we show that the
original conditions can be relaxed. Second, we derive sharper
theoretical results.



A. Multistage Decision Making with Partial Observations

Formulation. Let £ and 5 be measurable spaces representing
the action and state spaces, respectively. Consider a convex
and compact set O C R? as the outcome space. At each
discrete time step n = 1,2,..., a decision maker selects
an action e,, from £ and observes the outcome M (e, by,),
where M : £ x B — O is a measurable function. However, in
many practical scenarios, the outcome is not fully observable;
instead, it is subject to noise. Consequently, the decision maker
does not have direct access to M (e, by,) but only to a noisy
observation M (ey,, by, &), where &, represents the noise.

We analyze a multistage decision-making model with partial
observations under the following framework. The sequences
{(én,bn)},>¢ and {&,},,~, form random processes defined
on a probability space (€2, F,P), and they are adapted to
the filtration {F,}. The noise sequence {,} satisfies the
condition that for some 7' > 0, any ¢ > 0, and any
(e,0) € € x B,

m(jT+t)—1

>

i=m(t)

where m(t) = max{neN:Y> " 1<t} and A;M =
M(e,b) — M(e,b; &;). The decision-making process is in-
dependent of the underlying environment given past infor-
mation {(e1,b1),...,(en,bn)}, which can be expressed as
P((ent1,bn41) € de x db | Fp) = Plept1 € de |
Fn)P(bpy1 € db | F,). Rather than keeping track of
individual observations, the decision maker maintains only the
cumulative average of past (partially observed) outcomes,

lim P

n— oo

(IIL1)

sup max

P ;AqM Z g == O,
j>n t<

1=~

X, = ;M RN (IIL.2)
Decisions for future actions are based on this running average,
following the probability distribution P (e,11 € de | F,,) =
Qx,, (de), where Qx(-) is a probability measure on £ with
finite second-moment for each x € (. Moreover, for any
measurable set A C &, the function x — Qx(A) is measur-
able. The collection Q = {Qx : x € O} defines the strategy
employed by the decision maker. Blackwell’s approachability
theory plays an important role in economics. We first make
an application of results presented in Section II to investigate
Blackwell’s approachability.

Definition IIL.1. [Blackwell’s approachability] A set £ C O
is said to be approachable if there exists a strategy () such
that X,, — E w.p.l.

Let X" (t) be the shift sequence of functions of the piece-
wise linear interpolation generated by the sequence {X,,} and
the step-size sequence {1}.

For each x € O, let

G1(x) = {

where P(B) is the set of probability measures over B having
finite second-moment. Define G(x) = —x + oG (Ilp(x)).

M (e,b)Qx(de)v(db) : v € P(B)} ,

ExB

The next two theorems will provide conditions that a set is
approachable.

Theorem IIl.1. The limit of any convergent subsequence of
X™(t) is a solution of the following differential inclusion w.p.1

X(t) € G(X(t)).
Proof. From (I11.2), we have that
(n+1)(Xnt1 — Xa)
== X+ M (€nt1,bny1;€ns1)
M(e,bpy1)Qx, (de)P(bpt1 € db | Fp)

(IIL.3)

=—-X, +
EXB

+ ([ a1t @u(ae)

_ M(e,bni1)Qx. (de)P(bpyr € db | fn)>
EXB

+ M(€n+1, bn-l—l) - / M(e, bn-H)an (d@)
£

+ M (ens1,bns1; €nt1) — M(ens1, bosr)-
(I11.4)

We can check that

X+ M (e, bpt1)Qx, (de)P(bpt1 € db | Fp) € G(x),
ExB

and the remaining terms in (II1.4) satisfy Assumption 1. There-

fore, by applying Theorem II.1, we complete the proof. [l

Theorem IIL.2. If there is a strategy Q) such that E is
a globally asymptotically stable set of differential inclusion
(I11.3), then E is approachable.

Proof. Since E is a globally asymptotically stable set of
differential inclusion (IT1.3), {X,, } visits the compact subset of
its domain of attraction DA(F) infinitely often with probability
1. Therefore, by applying Theorem II.1, X,, — E w.p.1, which
means E is approachable. We complete the proof. O

Next, we investigate the robustness of Blackwell’s ap-
proachability. Assume that noise-corrupted perturbations can-
not be averaged out but is bounded by 7 and denoted by £,
an approachable set of the corresponding algorithm with this
7. We expect that Blackwell’s approachability is robust in the
sense that when n — 0, E, converges to an approachable
set E/ of the algorithm corresponding to n = 0. In the next
theorem, we show that this property holds.

Theorem IIL3. If the "convergence to 0 ” condition (IIl.1)
is relaxed as |M(e,b) — M (e, b,&)| < n,Ve,b,&, w.p.1, then
theorems III.1 and II1.2 still hold with G in (IIL.3) being
replaced by its neighbor with radius n. Moreover, if E, is a
globally asymptotically stable set of the corresponding (limit)
differential inclusions (and thus, is an approachable set), then
there is a (deterministic) non-decreasing function ¢(-) satis-
fying limy_0 ¢(t) = 0 such that distance (E,, E) < ¢(n).

Proof. Since | M (e, b) — M (e, b,&)| < n,Ve, b, &, w.p.1, using
proposition 2.2 in [21], we get that X(¢) € co(G(X(t) +



2¢B) + nB) = @(G(X(t) 4+ 2¢B)) + nB. Hence, X(t) €
Ne>0c0G(X(t) + eB) +nB = G(X(t)) + nB, or

X(t) € Ny(G(X(1)).

By using Theorem II.2 there exists a (deterministic) posi-
tive non-decreasing function ¢(-) such that lim; o ¢(t) =
0 and limsup,_, distance(X,,E) < ¢(n). Thus,
distance (E,, E) < ¢(n). We complete the proof. O

(IIL5)

Next, we assume that there are a policy @) and x*, which
is a unique approachable point under policy ). We aim to
investigate the rate of this approaching. Let Y, := X’i/%x be
the normalized sequence, and define the piecewise constant
interpolation Y(-) of Y, and its shifted process Y"(-) as

YO(t) =Y, if t € [ty,tny1); and Y™ := YO(t,+1),t > 0.

Theorem IIL4. [f there exists a strategy Q and E = {x*} isa
unique approachable set, then under Assumption 2, the limit
process of a convergent subsequence of shifted interpolated
processes generated by normalized sequence %= X" con-
verges weakly to solutions of a stochastic differential inclusion.

Proof. By rewriting X,,4; as we did in (IIl.4), we can verify
that the sequence X,, fit the framework of Theorem II.3. Thus,
this theorem follows Theorem I1.3 O

B. Two-Player Game

In this section, we consider a two-player game. Let .S and
V' be two sets of moves, they can be infinite. At each stage
n, player 1 choose s, € S and player 2 choose v, € V.
The payoff of that stage is g(s,,v,), where g : S x V — O
is a measurable function, @ C R™ is the outcome space.
However, in practice, the exact outcome g(s, v) is not available
to the players, but only a perturbed observation g(s, v, ) with
& representing some noise. Let H,, = (S x V)™ denote the
space of all possible sequences of moves up to time n. The
general framework can be summarized as follows.

(1) The sequence {(sy,vn)},>; and {&,},>, are random
processes defined on some probability space (€2, F,P)
and adapted to the filtration {F,}. Moreover, the noise
sequence {&, } satisfies that for some 7" > 0, each € > 0,

and each (s,v) € S xV,
m(jT+t)—1
S P 2 GAwze(=0
(IIL6)
where m(t) = max{neN:Y" 1 <t}; Ayg =

9(57 U) - g (57 v; 51)

(2) The moves of the players are independent if provided the
past information h,, i.e., P((sp41,0nt1) € ds X dv |
Fn) =P(spy1 €ds | Fu)P(vpy1 € dv | Fp);

(3) Player 1 only know the law F': O x S x V — R™, some
bounded measurable map, of interest functions X,, and
the next moves. The process X,, is defined as:

Xn+1 - Xn + an+1F(Xn; Sn+15Un+1, §n+1); (HI7)

9XTL:

S|

For example, in practice, we often choose a,, =

1 21 1 g(shvlagz)

@ lg‘llayer 1’s decisions are based on these information,
ie, P(sp41 €ds| Fn) = Qx,(ds), where for each
x € O,Qx(-) is a probability measure over .S, and for
each measurable set A C S, the map: x € O — Qx(A4) €
[0, 1] is measurable. The family Q@ = {Qx : x € O} is a
strategy for player 1.

We first consider the case when

1 1<
n — an:* Ni, <In 111.8
L) D R
Define the map G : R™ — 2" G(x) = co{-x +

J59(5,v)Quyx)(ds);v € V}. Then we also get the same
results as in Multistage Decision Making with Partial Obser-
vations model in Section III-A.

We now consider procedures, where, after each stage n
player 1 is uninformed of his previous sequences of moves
but only know the law F' and player 2’s moves. The new
process X is defined as:

X5y = X5+ an /S FX, 5,01, 1) Qo (d5).

(I11.9)
Then, a procedure in law is a strategy @ = {Qx+ : x* € O}
1
as above. We will analyze a concrete case when a,, = — and
1 n
X =~ gl i, &) Qxx (ds). II1.10
= [ Een @) ano

Let X*"(¢t) be the shift sequence of functions of the
piecewise linear interpolation generated by the sequence {X? }
and the step-size sequence { n} We also get following results
about approachability.

Theorem IIL5. Suppose that X*(-) is the limit of a convergent
subsequence of {X*"(-)}. We get that X*(-) is a solution of
the differential inclusion

X € G(X). (IIL11)

Proof. We obtain from (III.10) that

(n+ D1 = X3) = X0+ [ gl 0010 (05)
[ 860160010 @s (05) — [ gl 0040)Q ().
s 5 (I11.12)
We can check that =X + [ g(s, vn11)Qx: (ds) € G(X*),
and the remaining terms in (I[1.12) satisfy Assumption 1. By
applying Theorem II.1, we complete the proof. O

The following theorems can be obtained as in section III-A.

Theorem IIL.6. If there is a strategy @ such that E is

a globally asymptotically stable set of differential inclusion
(Il1.11), then E is approachable.



Theorem IIL.7. If the “convergence to 0’ condition (II1.6)
is relaxed as |g(s,v) — g(s,v,8)| < n,Ve,b,§, wp.1, then
theorems IIL5 and II1.6 still hold with G in (IIl.11) being
replaced by its neighbor with radius 1. Moreover, if E, is a
globally asymptotically stable set of the corresponding (limit)
differential inclusions (and thus, is an approachable set), then
there is a (deterministic) non-decreasing function ¢(-) satis-
fying limy_, ¢(t) = 0 such that distance (E,, E) < ¢(n).

Theorem IIL8. If there exists a strategy () such that E =
{x*} is a unique approachable set, then under Assumption
2, the limit process of convergent subsequences of shifted
and interpolated processes Xn_x" converges weakly to the
solution of a stochastic differential inclusion.

Now, suppose that player 1 uses a procedure in law. Define

GHX.X") = (= + [ 9(5.0)Qnopo ().

/S_X* + /SQ(S’U)QHO(:«*)(CZS));U eV}

Similarly, let X" (¢) be the shift sequence of functions of
the piecewise linear interpolation generated by the sequence
{X,} and the step-size sequence {1} and X(-) be the limit
of a convergent subsequence of {X"(-)}. Applying results in
Section II, we get the following theorem.

Theorem IIL9. The coupled system (X", X*™) are solutions
of the differential inclusion (X, X*) € G? (X, X").

Thanks to the limit theorem, we then follow similarly
argument in [5] to obtain the following results.

Assumption 3. G is an upper semicontinuous correspondence
from R™ to itself, with compact convex nonempty values and
which satisfies the following growth condition. There exists
¢ > 0 such that for all x € R™, sup,¢ py(y) [12]] < e(1+|[z]]).

Assumption 4. The map F' satisfies one of the two following
conditions:

(i) There exists a norm || - || such that x — x + F(x,s,v)
is contracting uniformly in h = (s,v). That is, ||x +
F(x,h) = (y + F(y,h)| < pllx —yl| for some p < 1.

(i) F is C' in x and there exists o > 0 such that all eigen-
values of the symmetric matrix ?‘TI;(Xv h) + 8g—XT(x, h)
are bounded by —a, where, T stands for the transpose.

Theorem IIL10. Assume that {X,, X%} is a bounded se-
quence. Under a procedure in law, the limit sets of X" and
X*™ coincide, and this limit set is an internally chain transitive
set of the differential inclusion (IIL.11).

IV. CONCLUDING REMARKS

We have focused on set-valued stochastic approximation in
this paper. The main effort is to demonstrate the utility of the
results of SA to applications. It is conceivable that such set-
valued SA will make substantial impact for a wide range of
applications for years to come.
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