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Abstract — Entangled photon detection is essential for
advancements in quantum communication, cryptography, and
fundamental quantum mechanics experiments. This study
introduces a novel application of unsupervised machine
learning for identifying potential entangled photon events by
analyzing voltage signals recorded from Silicon Multiplier
Amplified Detectors (SiMPs). By framing photon detection as
an anomaly detection problem, we employ the Isolation Forest
(iForest) algorithm to isolate rare and distinctive signal
patterns within large, noisy datasets without requiring labeled
training data. This is the first application of iForest in the
context of entangled photon detection. The method enables
automated identification of anomalous events exhibiting time
correlations across multiple measurement channels, offering a
scalable and computationally efficient solution for real-time
processing of experimental data in quantum optics.

[. INTRODUCTION

The detection of entangled photon pairs is a critical task
in quantum optics, underpinning advancements in quantum
communication, cryptography, and foundational tests of
quantum mechanics [1]. In our experiments, entangled
photon pairs are generated using a periodically poled
Potassium Titanyl Phosphate (ppKTP) crystal, which
facilitates the type-Il spontaneous parametric down-
conversion (SPDC) process. This process results in the
splitting of a 405 nm photon into two 810 nm photons that
are nominally entangled in the polarization domain. Photon
signals are captured via Silicon Multiplier Amplified
Detectors (SiMPs) connected to oscilloscope channels [2].
These devices record voltage signals produced by photon
interactions, enabling a detailed analysis of polarization
correlations.

Detecting these photons, however, presents several
challenges. The generated entangled photon pairs are
inherently rare events, deeply embedded within a noisy signal
environment. This noise arises from various sources,
including dark current in the SiMP detectors, environmental
photons, and spurious avalanche events. Consequently, a
reliable method for isolating true photon detection events
from noise is essential. The complexity of the task is further
compounded by the need to simultaneously analyze signals
from two oscilloscope channels corresponding to orthogonal
polarizations, which requires precise time and voltage
correlations to reliably infer entanglement.
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Traditional photon detection methods, such as simple
threshold-based approaches, often struggle to distinguish
genuine photon events from noise in such challenging
environments. This limitation motivates the exploration of
advanced techniques, including machine learning algorithms
that can adapt to complex signal patterns and improve
detection accuracy. Among these techniques, the Isolation
Forest (iForest) algorithm, introduced by Liu et al. in 2008
[3], has emerged as a powerful tool for anomaly detection
due to its efficiency, scalability, and its ability to handle large
datasets with low memory requirements. Unlike conventional
approaches that rely on profiling normal data, iForest isolates
anomalies through recursive partitioning in an ensemble of
binary trees, making it particularly effective for identifying
rare and unusual patterns in data [4]. Although our approach
is designed to detect entangled photon events, it should be
noted that the anomalies identified by iForest may also reflect
time-correlated photon detections. Thus, while promising, the
results must be interpreted with caution until further analyses
can conclusively confirm photon entanglement.

The versatility of the iForest algorithm is well
documented across various domains, including cybersecurity,
finance, healthcare, and web traffic analysis. In cybersecurity,
iForest has proven effective in intrusion detection systems by
identifying malicious activities within network traffic. For
example, Laskar et al. [5] demonstrated the integration of
iForest with K-Means clustering for anomaly detection in
industrial big data scenarios, highlighting its capability in
monitoring and securing computer networks. In the financial
sector, iForest has been employed to detect fraudulent
transactions by identifying deviations from typical patterns,
making it suitable for real-time fraud detection [6]. In
healthcare, iForest has been used to monitor physiological
signals, enabling the detection of anomalies that may signify
underlying medical conditions [7]. Additionally, in web
traffic analysis, iForest has been applied to distinguish
anomalous patterns from normal traffic, further emphasizing
its versatility and effectiveness in managing complex datasets

8].

In the context of quantum optics, iForest offers a
promising solution for detecting entangled photon pairs due
to its ability to identify rare and distinct events without
requiring labeled training data — a particularly advantageous
feature in experimental settings where labeled data is scarce
or difficult to obtain [9]. In this study, we adapt iForest to
detect photon events by analyzing voltage signals recorded
from the two SiMP-connected oscilloscope channels. The
algorithm's ability to rapidly isolate anomalies, coupled with
its low computational complexity, makes it an ideal choice
for processing the large datasets generated during
experiments. By treating photon detection as an anomaly
detection problem, we aim to identify time-correlated events



across the channels that may correspond to entangled photon
pairs.

The rest of the paper is organized as follows: Section II
describes the experimental setup and data acquisition process.
Section III details the methodology, including data
preprocessing and the application of the Isolation Forest
algorithm. Section IV presents and discusses the results.
Finally, Section V concludes the paper and outlines future
directions.

II. METHODS

A. Isolation Forest

Isolation Forest is a model specifically designed for
anomaly detection that isolates observations by constructing
random binary trees, known as Isolation Trees (Fig. 1). The
core principle of iForest is based on the fact that anomalies
are "few and different,” making them easier to isolate
compared to normal data [3]. Each iTree is built by
recursively splitting the data using randomly selected features
and thresholds until all instances are isolated. The average
path length (i.e., the number of splits required to isolate a
data point) serves as the basis for assigning anomaly scores;
shorter path lengths correspond to higher anomaly
likelihoods.

To detect anomalies effectively, iForest employs an
ensemble approach, where multiple iTrees are generated
using random subsets of the dataset (Fig. 2). This approach
ensures robustness and reduces the impact of random noise,
while the algorithm maintains linear computational
complexity O(n-y-log(y)), where n is the dataset size and
is the sub-sample size.

B. An Anomaly Score

The anomaly score in the Isolation Forest (iForest)
method quantifies the degree of deviation of a data point
from the norm. It is derived from the path length A(x),
defined as the number of edges traversed from the root node
to a terminal node in an isolation tree (iTree). Anomalous
points, being sparse and distinct, generally exhibit shorter
path lengths compared to normal data points.

For normalization, the average path length for a dataset of
n instances, denoted as c(n), is approximated using the
harmonic number H(i), defined as:

H(i)=In(i)+y. (1)

where y is the Euler-Mascheroni constant (=0.577). The
average path length for unsuccessful searches in a binary
search tree, analogous to termination in iTrees, is given by:

c(m) =2Hm—1) — 2(n—1)/n. 2)

Using this, the anomaly score s(x,n) for a data point x is
calculated as:

—E(R(0))
s(x, n) =2 < (3)
where E(h(x)) represents the mean path length over an
ensemble of iTrees.
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Figure 1. An Isolation Tree (iTree) used in the Isolation Forest algorithm.
The tree recursively splits data based on randomly chosen features and
thresholds (R). Shorter path lengths (e.g., data point A) correspond to higher
anomaly likelihoods, while longer path lengths (e.g., data points B, C, D, E)
are indicative of normal instances
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Figure 2. Ensemble of Isolation Trees (iTrees).
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This formulation ensures that the anomaly score s(x,n)
effectively captures the degree of deviation of a data point x
from the general data distribution. Depending on the value of
s(x,n), three distinct scenarios can be identified.

e High likelihood of being an anomaly: When the
average path length E(A(x)) approaches zero, the
anomaly score s(x,n) approaches 1. This indicates
that the data point x is highly likely to be an
anomaly, as it is isolated very early in the
construction of the isolation tree.

e Indistinguishability from normal data: When E(A(x))
is approximately equal to the average path length
c(n), the anomaly score s(x,n) approaches 0.5. This
suggests that the data point x cannot be distinguished
from the normal data distribution and is not
considered anomalous.

e Typicality of the data point: When E(h(x))
approaches the maximum possible path length n—1,
the anomaly score s(x,n) approaches 0. This implies
that the data point x is a typical member of the
dataset and shares similar characteristics with the
majority of the observations.

These three properties enable a precise interpretation of
the anomaly score s(x,n), making it a robust metric for
identifying data points that deviate from the general
distribution.



Therefore, the anomaly score is bounded between 0 and
1, with higher values indicating greater anomaly. By ranking
data points based on their anomaly scores, iForest effectively
isolates rare, high-value photon detection events amidst noisy
observations. This capability is particularly suited to the
sparsity and distinctness of entangled photon signals, which
are fundamental to quantum communication experiments.

C. Application to Entangled Photon Detection

In our experimental setup, entangled photon pairs are
generated through a periodically poled Potassium Titanyl
Phosphate (ppKTP) crystal using the type-II spontaneous
parametric down-conversion (SPDC) process, as shown in
Fig. 3. This optical configuration facilitates the generation of
orthogonally polarized photon pairs, which are critical for
studying entanglement phenomena.

Voltage signals resulting from photon detection are
recorded from two oscilloscope channels, each corresponding
to one of the two orthogonally polarized photon streams
detected by Silicon Multiplier Amplified Detectors (SiMPs)
[10]. These signals are inherently noisy, consisting of
contributions from environmental photons, dark currents, and
spurious avalanche events. To address this, we utilize the
Isolation Forest (iForest) algorithm, treating photon detection
as an anomaly detection problem to isolate significant photon
events.

The experimental setup consists of a pulse generator that
provides a reference signal for triggering the laser, while the
oscilloscope records three signals: Channel 1 (CH1) captures
the output from the first SIMP, Channel 2 (CH2) records the
signal from the second SiMP, and Channel 3 (CH3) logs the
reference signal from the pulse generator. In the experiments,
the time window for detecting photon correlations is
determined by the reference signal, which serves as the laser
trigger. The laser's rising edge defines the Regions of Interest
(ROIs), which encapsulate time intervals where entangled
photon events are most likely to occur.

The proposed method adapts the Isolation Forest (iForest)
algorithm to detect entangled photons in voltage signals
recorded from two oscilloscope channels. Initially, potential
anomalies are identified based on their signal characteristics
using iForest, trained with an ensemble size of t=100 and a
sub-sample size of =256 to balance computational
efficiency and detection performance [3]. Following anomaly
detection, each identified event is examined to determine
whether it falls within a Region of Interest (ROI), defined by
rising values in the reference signal (CH3), which indicates
laser activation. Events within these ROIs are further
analyzed for time correlation across channels, leveraging
time-of-flight measurements and signal synchronization to
assess the likelihood of entanglement.

D. Practical Implementation of Isolation Forest

For the practical implementation of the iForest algorithm,
Python was utilized alongside several libraries, including
PyOD for anomaly detection, pandas for data manipulation,
and matplotlib for visualization. The dataset, stored in a CSV
file, consisted of three channels: CHI1(V), CH2(V), and
CH3(V). The features CH1(V) and CH2(V) were extracted as
input variables for the model, while CH3(V) was retained for
auxiliary analysis.
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Figure 4. Scatter plot of CH1(V) vs. CH2(V) according to anomaly scores

The iForest model was initialized using the PyOD
library's implementation, with a fixed random seed to ensure
reproducibility. During training, the model constructed an
ensemble of isolation trees, identifying anomalies based on
their path lengths within the trees. After training, the model
assigned anomaly scores to each data point, ranking
observations according to their likelihood of being
anomalous.

To visualize the overall distribution of data points and
determine an appropriate contamination parameter, which
represents the expected proportion of anomalies, we generate
a scatter plot where each point corresponds to a measurement
in the dataset. The x-axis represents CH1(V), while the y-axis
represents CH2(V). The points are color-coded based on their
anomaly scores, assigned by the Isolation Forest model

(Fig. 4).

Normal points (with anomaly scores below 0.9) are
displayed in blue. Potential anomalies are represented using a
color gradient from light orange to red, where the intensity of
the red hue increases as the anomaly score approaches 1. The
most anomalous points, with scores close to 1, are
highlighted in red and overlaid on top of normal points to
enhance visibility.

This approach enables a smooth transition between
normal and anomalous regions, avoiding a strict binary
classification. It allows the model to better adapt to the
dataset’s characteristics and facilitates the selection of an
appropriate contamination parameter.

Based on both the scatter plot in Fig. 4 and the proportion
of points with anomaly scores exceeding 0.9 (as indicated by



gradient coloring), the contamination level was set to
0.000005 (0.0005%) for further analysis.

III. RESULTS AND DISCUSSION

A. Isolation Forest model training and application

The Isolation Forest algorithm was applied to analyze
three extensive datasets, each comprising 10 million
observations. These datasets contained measurements
recorded across three channels, CHI(V), CH2(V), and
CH3(V), with values expressed in volts. The analysis aimed
to identify anomalous patterns within the data, which may
correspond to rare photon detection events.
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Figure 5. Scatter plots of CHI(V) vs. CH2(V) for contamination level

0.000005. (a): Dataset 1. Anomalies are highlighted in red, while normal
data points are shown in blue. (b): Dataset 2. (c): Dataset 3

The algorithm's capacity to isolate anomalies was
evaluated under varying contamination thresholds, enabling a
detailed examination of its sensitivity and effectiveness in
detecting deviations from the normal data distribution.

To refine the anomaly detection process, models were
trained on three separate datasets at a contamination level of
0.000005 (0.0005%). These models were subsequently
utilized to detect anomalies within their respective datasets,
with results visualized through two-dimensional scatter plots
of CH1(V) versus CH2(V).

The analysis revealed that the model trained on Dataset 1
(Fig. 5 a) produced satisfactory results, identifying anomalies
predominantly in the central region of the scatter plot without
any false positives. This outcome demonstrates the model’s
capability to isolate statistically significant deviations
effectively and with high precision. Conversely, the models
trained on Dataset2 and Dataset 3 exhibited limitations
(Fig. 5 b,c). While some anomalies in the central region were
correctly identified, the detection process failed to capture all
critical deviations. Furthermore, both models flagged a
notable number of false positives, indicating reduced

specificity.
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Figure 6. Scatter plots of CHI(V) vs. CH2(V) for contamination level
0.000005. (a): Trained on Dataset 1 applied to Dataset 2. (b): Trained on
Dataset 1 applied to Dataset 3



Based on these observations, the decision was made to
apply the model trained on Dataset 1 to the anomaly
detection tasks for Dataset 2 and Dataset 3. The results, as
illustrated in subsequent scatter plots, showed a significant
improvement in performance (Fig. 6). Anomalies in the
central region of the diagrams were accurately identified,
with a marked reduction in false positives, thereby
confirming the robustness and generalizability of the model
trained on Dataset 1.

B. Visualization of Anomaly Detection Results

For a detailed analysis of potential events of entangled
photon generation, we extract and visualize localized
segments of the time series. The segmentation is based on
detected anomaly clusters, where anomalies occurring within
10 consecutive indices are considered a single event. Each
extracted segment consists of 100 consecutive data points,
centered around the most significant anomaly within the
cluster.

The visualization presents CH1(V) (blue) and CH2(V)
(green) as continuous lines, adjusted so that their minimum
value within the window is zero, enhancing readability by
normalizing signal variations. Anomalous points in CH1(V)
and CH2(V) are overlaid in orange and purple, respectively,
to highlight deviations from normal behavior. A vertical
dashed red line marks the index of the central anomaly within
the segment, providing a clear reference for precise
localization. In addition to CH1(V) and CH2(V), we include
CH3(V), which serves as an external indicator relevant to the
experimental conditions. Due to the significantly different
magnitude of CH3(V) compared to CHI(V) and CH2(V), a
scaling transformation is applied:

The minimum CH3(V) value within the selected segment
is subtracted to shift the curve above zero:

CH3ji=CH3-min(CH3in). 4)

The resulting values are scaled proportionally to the
amplitude range of CHI(V) and CH2(V) to ensure
appropriate visualization on the same plot:
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The actual CH3(V) values remain interpretable via a
secondary y-axis (right-hand side), where the original scale is
preserved.

The CH3 signal plays a critical role in identifying
potential events of entangled photon generation. This
experiment utilizes a signal from a wave generator to define
the Regions of Interest (ROIs) in which the correlation can
appear. Specifically, the rising slope of this signal triggers the
laser, marking the potential time frame for photon pair
generation. Consequently, for an entangled photon generation
event to be considered valid, the CH3 signal must exhibit an
increasing trend within the analyzed window.

C. Detected Potential Events of Entangled Photon
Generation
Two potential photon generation events were identified
across the analyzed datasets. These events are characterized
by peaks in both CHI and CH2 signals, accompanied by a

®)

simultancous increase in CH3 wvalues within the
corresponding time windows, indicating laser activation.

The anomaly group detected around index 9,324,414 in
Dataset 1 exhibits peaks in both CH1 and CH2 signals
(Fig. 7). The CHI (blue) peak lags behind the CH2 (green)
peak by 2 samples, corresponding to a time delay of 1 ns
(each sample representing 0.5ns). This temporal shift
suggests a potential spatial separation, indicating a time
correlation between the photons. The algorithm identified
peak amplitudes of approximately 0.14V, while the
background noise level remains around 0.06 V.

Additionally, within this time window, the CH3 signal
shows a rising trend, increasing from 3.0 V to 3.3 V. This
confirms that the laser was active during the observed
anomaly, supporting the hypothesis that the event may be
related to photon pair generation.

However, the detected peaks are not sharply defined,
making visual confirmation challenging. While the presence
of time correlation and rising CH3 wvalues suggests a
plausible entanglement event, further validation is required.

A second anomaly group was detected around index
7,123,247 in Dataset 2. Similar to the first event, both CHI
and CH2 signals exhibit peaks, with a measured time delay of
3 samples (1.5 ns). The CH3 signal also exhibits a rising
trend, increasing from 2.8 V to 3.15 V within the same time
window (Fig. 8).
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Figure 7. Anomaly group detected around index 9,324,414 in Dataset 1.
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Figure 8. Anomaly group detected around index 7,123,247 in Dataset 2
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Figure 9. Anomaly group detected around index 5,344,004 in Dataset 3.

The observed 1.5 ns delay between CH1 and CH2 peaks
suggests a consistent time correlation, potentially indicative
of photon entanglement. However, as with the first event, the
peak shapes are not sharply defined, requiring additional
investigation to confirm their origin and significance.

Figure 9 illustrates an event from Dataset 3 that initially
appeared to be a strong candidate for photon entanglement
due to the precise time correlation between CH1 and CH2
signals. The peaks in both channels occur simultaneously,
with no measurable delay. Additionally, both maxima exhibit
flattened tops, suggesting that the algorithm identified peak
positions at the midpoint of these regions. The rising slopes
of CH1 and CH2 begin at the same sample and align
perfectly, a characteristic behavior expected in single-photon
avalanche diode (SiPM) operation, where a photon triggers
the avalanche.

However, further analysis of the CH3 signal reveals that
its values remain stable within the range of 0.35-0.44V,
without the characteristic increase associated with laser
activation. Since entangled photon generation in this setup is
only possible during laser pulses, the absence of a rising CH3
signal strongly suggests that this event is not related to
spontaneous parametric down-conversion (SPDC) but is
instead a result of dark current or other background noise in
the detection system. While this observation exhibits
excellent peak alignment, the lack of supporting laser activity
indicates that it does not correspond to a genuine entangled
photon event.

IV. CONCLUSION

This study presented a novel application of the Isolation
Forest (iForest) algorithm for detecting potential entangled
photon events based on voltage signals acquired from
Silicon Multiplier Amplified Detectors (SiMPs). By
conceptualizing photon detection as an anomaly detection
problem, we demonstrated that iForest effectively isolates
rare signal patterns within large and noisy datasets — without
the need for labeled data. This capability is particularly
valuable for identifying time-correlated events across
polarization channels, which are indicative of photon
entanglement.

This work represents the first known application of
iForest to the domain of entangled photon detection and

provides compelling evidence of its potential as a scalable
and computationally efficient tool for quantum optics. The
findings open new directions for real-time, data-driven
processing in quantum experiments. Future research will aim
to enhance temporal correlation analysis, integrate statistical
confidence measures, and explore the fusion of iForest with
deep learning models. Expanding this approach to broader
quantum systems may further accelerate progress in
quantum communication and computation.
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