
  

  

Abstract — Entangled photon detection is essential for 

advancements in quantum communication, cryptography, and 

fundamental quantum mechanics experiments. This study 

introduces a novel application of unsupervised machine 

learning for identifying potential entangled photon events by 

analyzing voltage signals recorded from Silicon Multiplier 

Amplified Detectors (SiMPs). By framing photon detection as 

an anomaly detection problem, we employ the Isolation Forest 

(iForest) algorithm to isolate rare and distinctive signal 

patterns within large, noisy datasets without requiring labeled 

training data. This is the first application of iForest in the 

context of entangled photon detection. The method enables 

automated identification of anomalous events exhibiting time 

correlations across multiple measurement channels, offering a 

scalable and computationally efficient solution for real-time 

processing of experimental data in quantum optics. 

I. INTRODUCTION 

The detection of entangled photon pairs is a critical task 
in quantum optics, underpinning advancements in quantum 
communication, cryptography, and foundational tests of 
quantum mechanics [1]. In our experiments, entangled 
photon pairs are generated using a periodically poled 
Potassium Titanyl Phosphate (ppKTP) crystal, which 
facilitates the type-II spontaneous parametric down-
conversion (SPDC) process. This process results in the 
splitting of a 405 nm photon into two 810 nm photons that 
are nominally entangled in the polarization domain. Photon 
signals are captured via Silicon Multiplier Amplified 
Detectors (SiMPs) connected to oscilloscope channels [2]. 
These devices record voltage signals produced by photon 
interactions, enabling a detailed analysis of polarization 
correlations. 

Detecting these photons, however, presents several 
challenges. The generated entangled photon pairs are 
inherently rare events, deeply embedded within a noisy signal 
environment. This noise arises from various sources, 
including dark current in the SiMP detectors, environmental 
photons, and spurious avalanche events. Consequently, a 
reliable method for isolating true photon detection events 
from noise is essential. The complexity of the task is further 
compounded by the need to simultaneously analyze signals 
from two oscilloscope channels corresponding to orthogonal 
polarizations, which requires precise time and voltage 
correlations to reliably infer entanglement. 
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Traditional photon detection methods, such as simple 
threshold-based approaches, often struggle to distinguish 
genuine photon events from noise in such challenging 
environments. This limitation motivates the exploration of 
advanced techniques, including machine learning algorithms 
that can adapt to complex signal patterns and improve 
detection accuracy. Among these techniques, the Isolation 
Forest (iForest) algorithm, introduced by Liu et al. in 2008 
[3], has emerged as a powerful tool for anomaly detection 
due to its efficiency, scalability, and its ability to handle large 
datasets with low memory requirements. Unlike conventional 
approaches that rely on profiling normal data, iForest isolates 
anomalies through recursive partitioning in an ensemble of 
binary trees, making it particularly effective for identifying 
rare and unusual patterns in data [4]. Although our approach 
is designed to detect entangled photon events, it should be 
noted that the anomalies identified by iForest may also reflect 
time-correlated photon detections. Thus, while promising, the 
results must be interpreted with caution until further analyses 
can conclusively confirm photon entanglement. 

The versatility of the iForest algorithm is well 
documented across various domains, including cybersecurity, 
finance, healthcare, and web traffic analysis. In cybersecurity, 
iForest has proven effective in intrusion detection systems by 
identifying malicious activities within network traffic. For 
example, Laskar et al. [5] demonstrated the integration of 
iForest with K-Means clustering for anomaly detection in 
industrial big data scenarios, highlighting its capability in 
monitoring and securing computer networks. In the financial 
sector, iForest has been employed to detect fraudulent 
transactions by identifying deviations from typical patterns, 
making it suitable for real-time fraud detection [6]. In 
healthcare, iForest has been used to monitor physiological 
signals, enabling the detection of anomalies that may signify 
underlying medical conditions [7]. Additionally, in web 
traffic analysis, iForest has been applied to distinguish 
anomalous patterns from normal traffic, further emphasizing 
its versatility and effectiveness in managing complex datasets 
[8]. 

In the context of quantum optics, iForest offers a 
promising solution for detecting entangled photon pairs due 
to its ability to identify rare and distinct events without 
requiring labeled training data – a particularly advantageous 
feature in experimental settings where labeled data is scarce 
or difficult to obtain [9]. In this study, we adapt iForest to 
detect photon events by analyzing voltage signals recorded 
from the two SiMP-connected oscilloscope channels. The 
algorithm's ability to rapidly isolate anomalies, coupled with 
its low computational complexity, makes it an ideal choice 
for processing the large datasets generated during 
experiments. By treating photon detection as an anomaly 
detection problem, we aim to identify time-correlated events 
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across the channels that may correspond to entangled photon 
pairs.  

The rest of the paper is organized as follows: Section II 
describes the experimental setup and data acquisition process. 
Section III details the methodology, including data 
preprocessing and the application of the Isolation Forest 
algorithm. Section IV presents and discusses the results. 
Finally, Section V concludes the paper and outlines future 
directions. 

II. METHODS 

A. Isolation Forest 

Isolation Forest is a model specifically designed for 
anomaly detection that isolates observations by constructing 
random binary trees, known as Isolation Trees (Fig. 1). The 
core principle of iForest is based on the fact that anomalies 
are "few and different," making them easier to isolate 
compared to normal data [3]. Each iTree is built by 
recursively splitting the data using randomly selected features 
and thresholds until all instances are isolated. The average 
path length (i.e., the number of splits required to isolate a 
data point) serves as the basis for assigning anomaly scores; 
shorter path lengths correspond to higher anomaly 
likelihoods. 

To detect anomalies effectively, iForest employs an 
ensemble approach, where multiple iTrees are generated 
using random subsets of the dataset (Fig. 2). This approach 
ensures robustness and reduces the impact of random noise, 
while the algorithm maintains linear computational 
complexity �(�⋅�⋅log(�)), where � is the dataset size and � 
is the sub-sample size. 

B. An Anomaly Score 

The anomaly score in the Isolation Forest (iForest) 
method quantifies the degree of deviation of a data point 
from the norm. It is derived from the path length ℎ(�), 
defined as the number of edges traversed from the root node 
to a terminal node in an isolation tree (iTree). Anomalous 
points, being sparse and distinct, generally exhibit shorter 
path lengths compared to normal data points. 

For normalization, the average path length for a dataset of 
� instances, denoted as �(�), is approximated using the 
harmonic number �(�), defined as: 

 H(i)=ln(i)+γ. (1) 

where 	 is the Euler-Mascheroni constant (≈0.577). The 
average path length for unsuccessful searches in a binary 
search tree, analogous to termination in iTrees, is given by: 

 c(n) = 2H(n−1) − 2(n−1)/n. (2) 

Using this, the anomaly score 
(�,�) for a data point � is 
calculated as: 

  (3) 

where �(ℎ(�)) represents the mean path length over an 
ensemble of iTrees.  

 

Figure 1.  An Isolation Tree (iTree) used in the Isolation Forest algorithm. 

The tree recursively splits data based on randomly chosen features and 
thresholds (R). Shorter path lengths (e.g., data point A) correspond to higher 

anomaly likelihoods, while longer path lengths (e.g., data points B, C, D, E) 

are indicative of normal instances 

 

Figure 2.  Ensemble of Isolation Trees (iTrees). 

This formulation ensures that the anomaly score 
(�,�) 
effectively captures the degree of deviation of a data point � 
from the general data distribution. Depending on the value of 

(�,�), three distinct scenarios can be identified.  

• High likelihood of being an anomaly: When the 
average path length �(ℎ(�)) approaches zero, the 
anomaly score 
(�,�) approaches 1. This indicates 
that the data point � is highly likely to be an 
anomaly, as it is isolated very early in the 
construction of the isolation tree. 

• Indistinguishability from normal data: When �(ℎ(�)) 
is approximately equal to the average path length 
�(�), the anomaly score 
(�,�) approaches 0.5. This 
suggests that the data point � cannot be distinguished 
from the normal data distribution and is not 
considered anomalous. 

• Typicality of the data point: When �(ℎ(�)) 
approaches the maximum possible path length �−1, 
the anomaly score 
(�,�) approaches 0. This implies 
that the data point � is a typical member of the 
dataset and shares similar characteristics with the 
majority of the observations. 

These three properties enable a precise interpretation of 
the anomaly score 
(�,�), making it a robust metric for 
identifying data points that deviate from the general 
distribution. 



  

Therefore, the anomaly score is bounded between 0 and 
1, with higher values indicating greater anomaly. By ranking 
data points based on their anomaly scores, iForest effectively 
isolates rare, high-value photon detection events amidst noisy 
observations. This capability is particularly suited to the 
sparsity and distinctness of entangled photon signals, which 
are fundamental to quantum communication experiments. 

C. Application to Entangled Photon Detection 

In our experimental setup, entangled photon pairs are 
generated through a periodically poled Potassium Titanyl 
Phosphate (ppKTP) crystal using the type-II spontaneous 
parametric down-conversion (SPDC) process, as shown in 
Fig. 3. This optical configuration facilitates the generation of 
orthogonally polarized photon pairs, which are critical for 
studying entanglement phenomena. 

Voltage signals resulting from photon detection are 
recorded from two oscilloscope channels, each corresponding 
to one of the two orthogonally polarized photon streams 
detected by Silicon Multiplier Amplified Detectors (SiMPs) 
[10]. These signals are inherently noisy, consisting of 
contributions from environmental photons, dark currents, and 
spurious avalanche events. To address this, we utilize the 
Isolation Forest (iForest) algorithm, treating photon detection 
as an anomaly detection problem to isolate significant photon 
events. 

The experimental setup consists of a pulse generator that 
provides a reference signal for triggering the laser, while the 
oscilloscope records three signals: Channel 1 (CH1) captures 
the output from the first SiMP, Channel 2 (CH2) records the 
signal from the second SiMP, and Channel 3 (CH3) logs the 
reference signal from the pulse generator. In the experiments, 
the time window for detecting photon correlations is 
determined by the reference signal, which serves as the laser 
trigger. The laser's rising edge defines the Regions of Interest 
(ROIs), which encapsulate time intervals where entangled 
photon events are most likely to occur. 

The proposed method adapts the Isolation Forest (iForest) 
algorithm to detect entangled photons in voltage signals 
recorded from two oscilloscope channels. Initially, potential 
anomalies are identified based on their signal characteristics 
using iForest, trained with an ensemble size of �=100 and a 
sub-sample size of �=256 to balance computational 
efficiency and detection performance [3]. Following anomaly 
detection, each identified event is examined to determine 
whether it falls within a Region of Interest (ROI), defined by 
rising values in the reference signal (CH3), which indicates 
laser activation. Events within these ROIs are further 
analyzed for time correlation across channels, leveraging 
time-of-flight measurements and signal synchronization to 
assess the likelihood of entanglement. 

D. Practical Implementation of Isolation Forest 

For the practical implementation of the iForest algorithm, 
Python was utilized alongside several libraries, including 
PyOD for anomaly detection, pandas for data manipulation, 
and matplotlib for visualization. The dataset, stored in a CSV 
file, consisted of three channels: CH1(V), CH2(V), and 
CH3(V). The features CH1(V) and CH2(V) were extracted as 
input variables for the model, while CH3(V) was retained for 
auxiliary analysis.  

 

Figure 3.  Optical setup for the experiments for photon correlation with 
ROI determination by laser trigger. 

 

Figure 4.  Scatter plot of CH1(V) vs. CH2(V) according to anomaly scores 

The iForest model was initialized using the PyOD 
library's implementation, with a fixed random seed to ensure 
reproducibility. During training, the model constructed an 
ensemble of isolation trees, identifying anomalies based on 
their path lengths within the trees. After training, the model 
assigned anomaly scores to each data point, ranking 
observations according to their likelihood of being 
anomalous. 

To visualize the overall distribution of data points and 
determine an appropriate contamination parameter, which 
represents the expected proportion of anomalies, we generate 
a scatter plot where each point corresponds to a measurement 
in the dataset. The x-axis represents CH1(V), while the y-axis 
represents CH2(V). The points are color-coded based on their 
anomaly scores, assigned by the Isolation Forest model 
(Fig. 4). 

Normal points (with anomaly scores below 0.9) are 
displayed in blue. Potential anomalies are represented using a 
color gradient from light orange to red, where the intensity of 
the red hue increases as the anomaly score approaches 1. The 
most anomalous points, with scores close to 1, are 
highlighted in red and overlaid on top of normal points to 
enhance visibility. 

This approach enables a smooth transition between 
normal and anomalous regions, avoiding a strict binary 
classification. It allows the model to better adapt to the 
dataset’s characteristics and facilitates the selection of an 
appropriate contamination parameter. 

Based on both the scatter plot in Fig. 4 and the proportion 
of points with anomaly scores exceeding 0.9 (as indicated by 

 



  

gradient coloring), the contamination level was set to 
0.000005 (0.0005%) for further analysis. 

III. RESULTS AND DISCUSSION 

A.  Isolation Forest model training and application 

The Isolation Forest algorithm was applied to analyze 
three extensive datasets, each comprising 10 million 
observations. These datasets contained measurements 
recorded across three channels, CH1(V), CH2(V), and 
CH3(V), with values expressed in volts. The analysis aimed 
to identify anomalous patterns within the data, which may 
correspond to rare photon detection events.  

 

Figure 5.  Scatter plots of CH1(V) vs. CH2(V) for contamination level 

0.000005. (a): Dataset 1. Anomalies are highlighted in red, while normal 

data points are shown in blue. (b): Dataset 2. (c): Dataset 3 

The algorithm's capacity to isolate anomalies was 
evaluated under varying contamination thresholds, enabling a 
detailed examination of its sensitivity and effectiveness in 
detecting deviations from the normal data distribution. 

To refine the anomaly detection process, models were 
trained on three separate datasets at a contamination level of 
0.000005 (0.0005%). These models were subsequently 
utilized to detect anomalies within their respective datasets, 
with results visualized through two-dimensional scatter plots 
of CH1(V) versus CH2(V). 

The analysis revealed that the model trained on Dataset 1 
(Fig. 5 a) produced satisfactory results, identifying anomalies 
predominantly in the central region of the scatter plot without 
any false positives. This outcome demonstrates the model’s 
capability to isolate statistically significant deviations 
effectively and with high precision. Conversely, the models 
trained on Dataset 2 and Dataset 3 exhibited limitations 
(Fig. 5 b,c). While some anomalies in the central region were 
correctly identified, the detection process failed to capture all 
critical deviations. Furthermore, both models flagged a 
notable number of false positives, indicating reduced 
specificity. 

 

Figure 6.  Scatter plots of CH1(V) vs. CH2(V) for contamination level 
0.000005. (a): Trained on Dataset 1 applied to Dataset 2. (b): Trained on 

Dataset 1 applied to Dataset 3 

(a)  

(b)  

(a)  

(b)  

(c)  



  

Based on these observations, the decision was made to 
apply the model trained on Dataset 1 to the anomaly 
detection tasks for Dataset 2 and Dataset 3. The results, as 
illustrated in subsequent scatter plots, showed a significant 
improvement in performance (Fig. 6). Anomalies in the 
central region of the diagrams were accurately identified, 
with a marked reduction in false positives, thereby 
confirming the robustness and generalizability of the model 
trained on Dataset 1. 

B. Visualization of Anomaly Detection Results 

For a detailed analysis of potential events of entangled 
photon generation, we extract and visualize localized 
segments of the time series. The segmentation is based on 
detected anomaly clusters, where anomalies occurring within 
10 consecutive indices are considered a single event. Each 
extracted segment consists of 100 consecutive data points, 
centered around the most significant anomaly within the 
cluster. 

The visualization presents CH1(V) (blue) and CH2(V) 
(green) as continuous lines, adjusted so that their minimum 
value within the window is zero, enhancing readability by 
normalizing signal variations. Anomalous points in CH1(V) 
and CH2(V) are overlaid in orange and purple, respectively, 
to highlight deviations from normal behavior. A vertical 
dashed red line marks the index of the central anomaly within 
the segment, providing a clear reference for precise 
localization. In addition to CH1(V) and CH2(V), we include 
CH3(V), which serves as an external indicator relevant to the 
experimental conditions. Due to the significantly different 
magnitude of CH3(V) compared to CH1(V) and CH2(V), a 
scaling transformation is applied: 

The minimum CH3(V) value within the selected segment 
is subtracted to shift the curve above zero: 

 CH3shift=CH3-min(CH3win). (4) 

The resulting values are scaled proportionally to the 
amplitude range of CH1(V) and CH2(V) to ensure 
appropriate visualization on the same plot: 

  (5) 

The actual CH3(V) values remain interpretable via a 
secondary y-axis (right-hand side), where the original scale is 
preserved. 

The CH3 signal plays a critical role in identifying 
potential events of entangled photon generation. This 
experiment utilizes a signal from a wave generator to define 
the Regions of Interest (ROIs) in which the correlation can 
appear. Specifically, the rising slope of this signal triggers the 
laser, marking the potential time frame for photon pair 
generation. Consequently, for an entangled photon generation 
event to be considered valid, the CH3 signal must exhibit an 
increasing trend within the analyzed window. 

C. Detected Potential Events of Entangled Photon 

Generation 

Two potential photon generation events were identified 
across the analyzed datasets. These events are characterized 
by peaks in both CH1 and CH2 signals, accompanied by a 

simultaneous increase in CH3 values within the 
corresponding time windows, indicating laser activation. 

The anomaly group detected around index 9,324,414 in 
Dataset 1 exhibits peaks in both CH1 and CH2 signals 
(Fig. 7). The CH1 (blue) peak lags behind the CH2 (green) 
peak by 2 samples, corresponding to a time delay of 1 ns 
(each sample representing 0.5 ns). This temporal shift 
suggests a potential spatial separation, indicating a time 
correlation between the photons. The algorithm identified 
peak amplitudes of approximately 0.14 V, while the 
background noise level remains around 0.06 V. 

Additionally, within this time window, the CH3 signal 
shows a rising trend, increasing from 3.0 V to 3.3 V. This 
confirms that the laser was active during the observed 
anomaly, supporting the hypothesis that the event may be 
related to photon pair generation. 

However, the detected peaks are not sharply defined, 
making visual confirmation challenging. While the presence 
of time correlation and rising CH3 values suggests a 
plausible entanglement event, further validation is required. 

A second anomaly group was detected around index 
7,123,247 in Dataset 2. Similar to the first event, both CH1 
and CH2 signals exhibit peaks, with a measured time delay of 
3 samples (1.5 ns). The CH3 signal also exhibits a rising 
trend, increasing from 2.8 V to 3.15 V within the same time 
window (Fig. 8). 

 

Figure 7.   Anomaly group detected around index 9,324,414 in Dataset 1. 

 

Figure 8.  Anomaly group detected around index 7,123,247 in Dataset 2 

 

 



  

 

Figure 9.  Anomaly group detected around index 5,344,004 in Dataset 3. 

The observed 1.5 ns delay between CH1 and CH2 peaks 
suggests a consistent time correlation, potentially indicative 
of photon entanglement. However, as with the first event, the 
peak shapes are not sharply defined, requiring additional 
investigation to confirm their origin and significance. 

Figure 9 illustrates an event from Dataset 3 that initially 
appeared to be a strong candidate for photon entanglement 
due to the precise time correlation between CH1 and CH2 
signals. The peaks in both channels occur simultaneously, 
with no measurable delay. Additionally, both maxima exhibit 
flattened tops, suggesting that the algorithm identified peak 
positions at the midpoint of these regions. The rising slopes 
of CH1 and CH2 begin at the same sample and align 
perfectly, a characteristic behavior expected in single-photon 
avalanche diode (SiPM) operation, where a photon triggers 
the avalanche. 

However, further analysis of the CH3 signal reveals that 
its values remain stable within the range of 0.35–0.44 V, 
without the characteristic increase associated with laser 
activation. Since entangled photon generation in this setup is 
only possible during laser pulses, the absence of a rising CH3 
signal strongly suggests that this event is not related to 
spontaneous parametric down-conversion (SPDC) but is 
instead a result of dark current or other background noise in 
the detection system. While this observation exhibits 
excellent peak alignment, the lack of supporting laser activity 
indicates that it does not correspond to a genuine entangled 
photon event. 

IV. CONCLUSION 

This study presented a novel application of the Isolation 

Forest (iForest) algorithm for detecting potential entangled 

photon events based on voltage signals acquired from 

Silicon Multiplier Amplified Detectors (SiMPs). By 

conceptualizing photon detection as an anomaly detection 

problem, we demonstrated that iForest effectively isolates 

rare signal patterns within large and noisy datasets – without 

the need for labeled data. This capability is particularly 

valuable for identifying time-correlated events across 

polarization channels, which are indicative of photon 

entanglement. 

This work represents the first known application of 

iForest to the domain of entangled photon detection and 

provides compelling evidence of its potential as a scalable 

and computationally efficient tool for quantum optics. The 

findings open new directions for real-time, data-driven 

processing in quantum experiments. Future research will aim 

to enhance temporal correlation analysis, integrate statistical 

confidence measures, and explore the fusion of iForest with 

deep learning models. Expanding this approach to broader 

quantum systems may further accelerate progress in 

quantum communication and computation. 
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