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Abstract— We report a successful results in the quantum
image encoding - reconstruction experiments with the usage
of local phase for pixel representation. This implementation
was intended for using the photonic quantum system, since the
phase shift is easy to produce. Our method will be implemented
in real photonic quantum computers, after further development.

Quantum Image Representation is well studied area in
quantum informatics. The first proposed algorithm was the
qubit-lattice method introduced in 2003. This method was not
harnessing the full potential of quantum system - using as many
qubits as there were pixel in the image.

Most commonly used methods right now are Flexible Rep-
resentation of Quantum Images (FRQI) proposed in 2011, and
Novel Enhanced Quantum Representation (NEQR) proposed in
2013, which uses superposition to encode a monochrome image
on a quantum computer using reduced number of qubits.

In this paper we want to propose the combination of
Local Phase Image Quantum Encoding method and Phase
Distortion Unraveling (PDU) error mitigating method as an
alternative method of quantum image encoding, producing
satisfying results.

I. INTRODUCTION

We want to propose the combination of the LPIQE method
[1] for quantum image encoding in conjunction with PDU
error correction [2], as a new way of hybrid image process-
ing, where all calculations are done on a quantum computer,
while error correction is applied on a classical machine.
This method is intended for use in quantum object detection
of aviation instruments, on images taken on a Microsoft
HoloLens 2 device inside the flight simulator cockpit.

LPIQE method of quantum image encoding uses
⌈log2X⌉+ ⌈log2Y ⌉+ 1 qubits, where X and Y reference the
X and Y dimensions of the encoded image. The additional
qubit is used for encoding color information. LPIQE method
uses the local phase to encode color information. LPIQE
method uses superposition to encode pixel coordinates.
Encoding color information in the local phase allows the
method to be combined with PDU error reduction.

The PDU method uses the PDU functions, which are the
functions interpolated for the set of points (xd, εd), where
xd is a value for which the function was measured and εd is
the recorded error. This way all qubits available on quantum
backends can be used for computation, without worrying
about error correction.
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Currently in the area of quantum image processing, for
encoding monochrome images two methods are most com-
monly used: FRQI [3] was the first method proposed in
2011, which used superposition to encode the color infor-
mation of the image. Then the corresponding qubits are
linked using multiple controlled Ry gates rotated by a
specific angle θ, which are applied to a remaining qubit.
NEQR [4] method was proposed in 2013. In contrary to it’s
predecessor it stores the image’s gray scale value in basis
state of a qubit sequence. One of the downsides is the larger
number of qubits needed for storing color value - the NEQR
algorithm uses 8 qubits to represent the value of shade of
gray intensity for each pixel (values from 0 to 255). This
means, that encoding just 2x2 image uses 10 qubits. NEQR
has a possibility to encode color images, but then for only
the color storage 24 qubits are used (3 groups of 8 qubits
for each of the RGB colors). The other downside is that
color storing is so involving, that it prevents any complex
transformations.

Quantum error correction and reduction is also a highly
researched area. Physical implementations of quantum com-
puters are limited by current technology. Those limitations
lead to occurrences of decoherence which can destroy a
quantum state.

Error correction, aims to undo and prevent the changes
caused by decoherence in the system, using additional qubits,
and is intertwined within the circuit performing quantum
computation. Two main classes of error correction methods
are:

• Quantum redundancy and measurement stabilizer
uses multidimensional Hilbert space on which the states
are recorded. An example of such code is, proposed
in 1996, 5-qubit error correction code [5], where 4
additional qubits were used, to correct the error of
just one of them. This is also the smallest number of
additional qubits needed to achieve a perfect quantum
error correction for one qubit.

• Quantum surface codes, are the second class of error
correction, most widely researched right now. These
codes are implemented on 2D qubit lattices [6], and
tackles the error of the whole quantum system. This
approach reduces the number of qubits needed for
error correction, but it also increases the complexity of
quantum circuit creation, because only the qubits lying
next to each other on the lattice could be directly linked
by quantum gates.



Quantum error reduction, on the other hand, aims just to
minimize the error. These methods could be implemented
in quantum, hybrid classical-quantum, or classical systems.
One of them is Richardson extrapolation error mitigation [7]
. Another example could be the quasi-probability method [8],
[9]. In this method the inverse process to the noise process
that occurred is probabilistically implemented.

In the presented work we use the LPIQE (Local Phase
Image Quantum Encoding), which was preliminary described
in [1]. This method is developed for image encoding and
processing in photonic quantum processors. Such quantum
systems are being currently widely developed. Therefore, the
LPQIE method is based on the phase shifts, since it is easy
to produce in photonic devices using just one phase shifter.
The encoded images can be utilized in two general ways:
they can be processed inside the quantum processor (e.g. for
object detection), or they can be send to another system. For
the second purpose, the scheme of encoding - reconstruction
is needed.

This work shows experimentally, that the encoding -
reconstruction scheme after PDU based error reduction is
possible in NISQ era. In the area of quantum communication
its usefulness can be conserved even beyond NISQ, since the
expectations of transmitted state are that their fidelity will be
on a much lower level than inside the quantum computers,
e.g. Tann [10].

II. MATERIALS AND METHODS

A. LPIQE method

Let’s consider an image of height H pixels and of width W
represented by a matrix Im =

[
p̂r,c

]
H×W ∧ r ∈ {0, . . . H −

1} ∧ c ∈ {0, . . .W − 1} ∧ p̂r,c ∈ [0, 1]∩R, where p̂r,c is the
intensity of pixel placed in r-th row and c-th column. We
can execute the (vertical) vectorization and obtain

−→
Im = [pj ]

T , s.t. : j = rW + c (1)

Using the Encoding the constant data (described by us in
previous works [1]) we can represent this form of an image
with the state:

|Im⟩ =
[
eip0 . . . eipJ , 0M−J] = J∑

j=0

eipj |j⟩ , (2)

J =WH − 1, M = 2⌈log2(WH)⌉

The first part of above state is the vector of WH exponential
functions of pixels intensities, the second part is a comple-
ments to quantum state’s requirement of having power of
two coefficients. This exponential functions can be treated
as local phases of a state, therefore we call it Local Phase
Image Quantum Encoding LPIQE. The state can be obtained

by an operator defined by matrix:

L̃(Im) = 1
−→
Im =


eip0 0 . . . 0
0 eip1 0 . . . 0
... 0

. . . 0
0 . . . 0 eipJ


L(Im) =

[
L̃(Im)J×J 0

0 1

]
M×M

(3)

where 1 is an identity matrix / operator. Hence this is
operator that has on diagonal, the exponential eipj of local
phases being the intensities of pixels. It can be generated,
on the low level of abstraction, using the combination
of multi-controlled phase shift gates and the technique of
uncomputation; however, currently available solution (e.g.,
qiskit) provides tools for defining the operator as matrix,
and the mapping it to the set of physically implemented
gates. Therefore, we can conclude that such a definition of
an operator is sufficient for current implementation.

B. Image reconstruction
To reconstruct an image, we have to extract the local

phases, using the following operator:

R(Im) =Υ · 1M ⊗H ·Θ(Im),where: (4)
Υ =perm(2, 1, 4, 3, . . . , J, J − 1, J + 1, J + 2, . . . , 2M)

Θ(Im) =
L(Im)⊗ |0⟩ ⟨0|+ 1⊗ |1⟩ ⟨1|√

2

which is unitary (but not Hermitian) operator and can be
used as en evolution operator. In the matrix representation,
the above operator has a block-matrix form, as in II-B.

R(Im) =
1

2
×

eip0 −1 0 . . . 0
eip0 1 0 . . . 0

...
. . .

0 . . . 0 eipJ −1
0 . . . 0 eipJ 1

0

0

1 −1 0 . . . 0
1 1 0 . . . 0
... 0

. . . 0
0 . . . 0 1 −1
0 . . . 0 1 1


2M×2M.

(5)

If we act with this state on homogeneous superposition of
log22M qubits we obtain probabilities for measuring eigen-
states:

p
(
|ka⟩ |a = 0

)
=

1

2M
(1− cos(pk)) (6)

p
(
|ka⟩ |a = 1

)
=

1

2M
(1 + cos(pk))

In the virtue of above considerations, the formula for the
reconstructed pixel p̃k in vectorized image is as follows

p̃k = acos(1− 2Mp(|k0⟩)), or p̃k = acos(2Mp(|k1⟩)− 1)
(7)



It would seem that the 2M factor before probability, will
kick the argument out of acos domains. Although from 6 we
know, that p(|kx⟩) ∈

[
0, 1

M

]
, however the pixels intensities

are from the range of [0, 1], hence the range of p(|k0⟩) is
limited to

[
0, 1−cos(1)2M ] ∼

[
0, 0.462M

]
, and the range of p(|k1⟩)

to ca.
[
1.54
2M , 1

M

]
. Hence for both cases the argument under

the acos function is in the range
[
0.54, 1

]
, and the fact that

acos domain is [0, π], gives sufficient margin for distortion
of outcomes, due to noise.

C. Error reduction

The proposed method is the development of PDU (Phase
Distortion Unraveling function method presented by Werner
et al. in [2] and its adjustment to the image processing area.

Let’s consider the PDU function ε(x) = γ̃(x) − γ(x). It
is an interpolation based on experimentally designated set
of εk, which are the errors for arbitrary arguments xk of
γ function. These arguments are the probabilities following
from local phases of qubits, extracted using phase-kickback
technique. We can generalize this notion considering that x
can be any object, for which we can experimentally designate
the set outcomes from the quantum computation process and
compare with expectation values. Therefore, we can define
the general version of PDU as follows:

Definition 2.1: Let |ψ⟩x be the the local phase eix of
the eigen state |ψ⟩ ∈ E (E is a measurement basis) in a
subspace of a n-qubit state, and the p |ψ⟩xk

is, experimentally
designated probability amplitude for state |ψ⟩ with phase xk.
In that case the function ε : E×[−π, π]∩R −→ R is General
PDU function if and only if its each projection on the eigen-
state is smooth due to phase and fulfills following:

∀k : ε(|ψ⟩ , xk) = p |ψ⟩xk
− ⟨ψ⟩xk

∀ |ψ⟩ ¬∃ε̃(|ψ⟩ , x) :
∫ π

−π
dx ε̃(|ψ⟩ , x) <

∫ π

−π
dx ε(|ψ⟩ , x)

(8)
It is obvious, that this definition formulates the interpolation
task, that may produce under-optimal solutions, in practice.
Therefore, an interesting attempt to solve the problem of
finding the proper curve for each |ψ⟩ is to use B-spline curves
with knots x1, . . . , xk, . . . , xK .

Furthermore, we can arrange the data dividing eigen-states
in a groups, as follows:

Definition 2.2: The arrangement of state |ψ⟩ is a tensor
product of sub-spaces of the space that it is embedded in.
Formally, an n-arrangement of state |ψ⟩ is the set A|ψ⟩ =
{|ψj⟩ , j ∈ [1, n]}, such that:

|ψ⟩ =
n⊗
j=1

|ψj⟩ = |ψ1ψ2 . . . ψn⟩ (9)

Definition 2.3: General PDU function on an arrangement,
is written in tensor-like notation:

Gψ1,ψ2,...ψn(x) = ε(|ψ⟩ , x) (10)
Definition 2.4: The Error sampling for arrangement

A|ψ⟩ = {|ψj⟩ , j ∈ [1, n]} and results of quantum sampling

made for phases {x1, . . . , xK} is a function R : E× −→ R
such that:

Rψ1,ψ2,...ψn,k = p |ψ1ψ2 . . . ψn⟩xk
− ⟨ψ1ψ2 . . . ψn⟩xk

(11)
Definition 2.5: Lets assume the arrangement A|ψ⟩ =

{|ψj⟩ , j ∈ [1, n]}. The calibration operator is an operator
C defined as follows:

CRψ1,ψ2,...ψn,k =Gψ1,ψ2,...ψn(x), s.t.

∀ |ψ⟩ ¬∃G̃ψ1,ψ2,...ψn(x) :∫ π

−π
dx G̃ψ1,ψ2,...ψn(x)

<

∫ π

−π
dx Gψ1,ψ2,...ψn(x) (12)

Basing on above definition, we can say that state representing
pixel is 2-arrangement |rc⟩, and the image sum of such
an arrangements. The reconstruction state is the sum of 3-
arrangements |rca⟩, where |a⟩ is single ancilla. However,
for reconstruction we use the subspace of the space where
reconstruction occurs, since we use the results only for one
ancillas eigen-state e.g, |a⟩ = |0⟩. Therefore the general PDU
for encoded picture P is equal to P r,c(x) and calibration
operator creates B-spline function.

D. Experimental protocol

In the experiments we have proved that it is possible to
use PDU function to reduce the error after encoding and
decoding an image on a real quantum device. For quantum
image encoding we have used Local Phase Image Quantum
Encoding (LPIQE) method. We have improved the results
for all tested images and quantum backends provided by
IBM, and available from Qiskit python library. Only 7-qubit
devices were used to encode and decode 8 × 8 black and
white images - IBM Nairobi, IBM Perth and IBM Lagos,
which was done to use the full potential of those 7-qubit
machines. The method was also tested for larger images
with the use of statevector simulator, also provided by IBM.
Experiments were done using libraries Qiskit for Python, and
also prepared by us for the research purposes - LPIQE and
PDU Python libraries.

The one ER (Encoding-Reconstruction) experiment was
conducted to check how the reconstructed image differs from
the original one. Hence, we define the ER experiment as
follow.

1) Parameters: τ - intensities of the pixels.
2) Generate an artificial image that has the same intensi-

ties of pixels, let’s say τ ∈ [0, 1] ∩ R.
3) Encode the image using quantum backend (simulator

or real quantum computer).
4) Reconstruct an image.
5) Compute the basic statistics of the difference image:

standard deviation, mean and MSE (Mean Square
Error).

We will denote ER(τ) the one experiment with the inten-
sities equal to τ . Using the above ER experiment, we can
define the calibration algorithm for Image PDU method as
follows.



1) Parameter: granularity g, which means the division of
the range [0, 1] ∩ R into g values.

2) j ← 0
3) Create an empty error sampling arrangement:

Rψ1,ψ2,...ψn,k, k ∈ {0, 1, . . . r}, where r is such a
number that r

g ≤ 1 and r+1
g > 1

4) For each v ∈ {0, 1g ,
2
g , . . . ,

r
g}, do:

a) execute ER(v) experiment.
b) determine the j-th "slice" of the error sampling

for the arrangement Rψ1,ψ2,...ψn,j using the orig-
inal and reconstructed images where states |ψm⟩
represents consecutive pixel of the images.

c) increment j
The ER experiment can be also made for the real image. In
that case we denote it ER(Im):

1) Parameters: Im - input image of proper resolution.
2) Load image Im
3) The remaining points are as in the original experiment.

After the whole arrangement is ready, the calibration operator
is the interpolation spanned by its slices. In a case of this
work we use the cubic interpolation.

After calibration we can reduce the errors using calibration
operator. The image after reduction is given by a pixel-wise
formula:

Icorrected(pu,v) = Ireconstructed(pu,v) + CRψ1,ψ2,...ψn,k(pu,v), ∧
k = Ioriginal(pu,v) (13)

If k is equal to one of the slices obtained in calibration
procedure its value is taken directly from the remembered
slices, in opposite case it is interpolated. Here we have to
emphasize, that calibration once made is applicable for the
relatively long time period, which we experimentally proved
in the mentioned previous work [2].

The final experiments was made in following way, as-
suming that the calibration was made already. We take the
data set of images, that is described in the next subsection.
For each image we made the ER experiment. We stored the
original, reconstructed and corrected images and the basic
statistics: mean, standard deviation and MSE of absolute
error between original and reconstructed and original and
corrected images.

Finally, we computed the correlation measures for the
same configurations as above. Namely, we used Spearman,
Pearson and Kendall correlation coefficient for each triple of
images separately. We also computed the aggregated results
determined on the sets of pixels of all images put together.

E. The parameters and dataset for our experiments

In this experiment we have proven that using PDU method
in conjunction with LPIQE method produces statistically
significant error reduction, while not using additional qubits.
As a dataset to use in the experiments, we created images
containing various shades of gray, as well as pure white and
pure black, of various sizes, all of which can be found on
projects GitHub page. Four of 8×8 images were created - the
first one, „named 1_original_small.png” being only black

and white, while the others are increasingly more complex.
As 16×16 images we used pictures of game character faces,
modified to our needs (scaled down and converted to black
and white). Both those sets of images can be found inside
original_images catalogue in the repository. For experiment
on real quantum device we determined PDU functions for
quantum backends, with granularity 6 - meaning that the
output error on image was determined for 6 distinct values
between 0 and 1. The granularity is a hyperparameter, that
should be determined for the specific problem. Than, batch
of 8 × 8 pixel, black and white images (40 at a time)
was encoded and decoded using LPIQE method. The PDU
function was than applied on the resulting image. Than
the results along with the mean square error, and standard
deviation of error was denoted. Also the time of calibration
of PDU function and the time of applying the method was
also recorded.

In addition we also tried this combination of LPIQE
method for quantum image encoding, and PDU method for
error reduction on larger - 16× 16 images, using statevector
simulator.

III. RESULTS

A. Error reduction of 8 × 8 monochrome images encoding
on real quantum devices

For this experiment, we collected data from 7-qubit quan-
tum computers. Data were collected between 02.2023 and
03.2023. Over 300 distinct results were recorded during that
time.

An example of PDU function result on an image could
be seen on figure 1. Also the difference in mean square
error (mse) and standard deviation of this of error for
the experiment, from which those images were taken, was
recorded (an experiment consists of one calibration of PDU
method and 10 cycles of encoding, decoding and applying
corrections) 2.

Fig. 1. Results for image collected on backend IBMQ Nairobi on
02.03.2023 before (left), after quantum computation,but before correction
(center) and after applying error correction factors (right).

Fig. 2. Mean square error and standard of deviation change across the
experiment collected on backend IBMQ Nairobi on 02.03.2023

Numerically we observed improvement in all statistical
tests, which could be seen in tables 3 (partial results are



available on a github repository). The statistics were mea-

Fig. 3. The correlation coefficients, divided by images tested: Pearson
product - moment, Kendall’s τ and Spearmans ρ with p-values generated
for examination of simplicity for result after PDU correction vs before,
collected on real quantum devices.

sured also for mean square error before and after applying
correction for all collected samples, and we observed the
drop from 0.321 on average, to 0.026, which is a twelve-
fold decrease. Standard deviation of error also dropped from
0.533 on average to 0.143, decreasing 3.7 times.

B. Error reduction on 16×16 monochrome images encoded
on statevector simulator

For this experiment, we collected data using statevector
simulator provided by IBM. We have used more complex
16 × 16 pixel images. The results were similar to these we
obtained on real quantum devices. This could be seen in
image 4. This time experiment consisted of 100 runs after
one calibration. The data showing mse and standard deviation
of error change for the experiment, from which that image
was sampled could be found on figure 5.

Fig. 4. Results for image collected on statevector simulator on 02.03.2023
before (left), after quantum computation,but before correction (center) and
after applying error correction factors (right).

Fig. 5. Mean square error and standard of deviation change, divided by
images tested, across the experiment collected using statevector simulator
on 02.03.2023

In this case we observed even greater improvement in the
statistical tests, which could be seen in tables 6. The MSE

Fig. 6. The correlation coefficients: Pearson product - moment, Kendall’s
τ and Spearmans ρ with p-values generated for examination of simplicity
for result after PDU correction vs before, for experiments run on statevector
simulator.

statistics further illustrates, that the correction method works

for larger images - dropping from 0.188 on average to 0.008
which is 23.5 times a decrease. Standard deviation of error
dropped from 0.278 to 0.082 - which is 3,4 times lower.
We suspect such high drop occurred, because the noise in
statevector simulator is deterministic, so it might be more
consistent than one, on the real quantum computers. The
statistical correlations (Pearson, Spearman and Kendall) are
shown on the fig. 3 for the quantum computer and on fig.
5 for simulator. Columns are organized in pairs regarding
correlations between different sets of images. First column
of this pair presents the correlation value and the second one
the statistical significance. The first pair shows the results for
original and reconstructed images, the second one between
the reconstructed and corrected images, while the last one
consider the original and corrected images. Therefore, in the
first one we see the level of image harm due to quantum
errors and decoherence occurring in quantum computer. The
third one shows the quality of presented error reduction
method. The middle one, present for the statevector only,
shows the interesting relation which shows the level of
corrections made by our method.

From the fig. 3, concerning real quantum computers, we
see that the correlation between the original and recon-
structed images doesn’t appear at all, since the all coefficients
oscillate around zero. Furthermore, the p-values are on the
level of 0.5, which means that statistical significance of the
results if low. We can guess, that the results are quite strange,
because the correlation has to appear, because if not, the
correction wouldn’t be possible. In other world - the corre-
lation exists but is hidden by quantum effect that influences
computation. Therefore, it cannot be captured by statistical
tests, which is seen by very high p-value. In contrary, In
a case of correlation between original and corrected images
the linear correlation (measured by Pearson’s r coefficient) is
very high - on the level of 0.906. The monotonic correlation
is a little bit poorer, but still considered as high, on the
level of 0.709 (Kendall’s tau) and 0.811 (Spearmann’s rho).
The significance of those results is high, since p-values are
close to zero. It proves, firstly, that our method can better
the reconstructed image significantly. Moreover it proves
indirectly, that the reconstructed images are not just random
noise, but holds the information about the original image.
Which is the experimental prove that LPIQE methods is
proper for image encoding in quantum systems.

The results obtained from simulator are higher, in case
of original vs corrected images and Pearson’s r coefficient:
0.94,+0.04. However in a case of Spearman’s rho and
Kendall’s tau are very similar, in case of rho, the same to
the 3rd digit after point and for tau the difference is on the
level of 0.01. Maybe it shows the relatively high quality of
the simulator? In a case of original image vs reconstructed,
there is also no significant differences between simulator and
real quantum computer in a perspective of statistical results.

The case of reconstructed vs corrected images brings the
interesting results with high statistical significance (p-value
for r is below 0.02, and for rho and tau close to 0). The
Pearson’s correlation is on the level of 0.19 and Kendall’s



0.25, so boths are slim. However Spearman’s is weak (0.33).
Certainly, we cannot say that reconstructed and corrected
images are correlated, but they have much better results than
the original vs reconstructed case. In our opinion it might be
the place, where the last one correlation arise in data.

IV. DISCUSSION & CONCLUSIONS

In this paper we have presented that LPIQE quantum
image encoding method in conjunction with PDU error
reduction, which we find useful for implementation in the
photonic quantum solution. We proved experimentally that
the proposed methods corrects the reconstructed images
statistically significant. This is confirmed by the fact that the
corrected images are visually similar to original ones, while
the reconstructed images, before error reduction resembles
the noise. Moreover the statistical measures shows the lack
of the correlation in case of reconstructed images and the
much higher correlations after the correction with very high
statistical significance. The Pearson coefficients are on the
level of 0.90 with p-value near zero, which proves very high
linear correlation between original and corrected images. The
monotonic correlations are lower, but still reasonable: The
Kendall tau is on the level of 0.70, and Spearman rho on
the level of 0.81, both with p-value near zero. It proves
that on the corrected images there still appears non-linear
distortions. Recapitulating, we can say that proposed method
is promising and proper for implementation in a photonic
circuit.

The method should also be scalable to larger images, as
the main limiting factor is the space needed to store all of the
collected values, and - if there is a need - some calculated
values of the interpolated functions. But even for high-
resolution photography, the space requirements for the PDU
table shouldn’t be a limiting factor, as the size of the table is
the same as the size of the image, and current computers
have no problem handling that. We plan to develop our
method in the several directions. Firstly we would like to
check how the granularity influences the quality of the error
reduction. Basing on the very preliminary experiments, we
expect the obvious relation that the increasing of granularity
betters the quality. However, we would like to check if there
is the optimal granularity, such that its greater values doesn’t
improve the error reduction quality. Furthermore, we would
like to check the method on other quantum computers and
compare the results in the context of reconstructed and cor-
rected images qualities. The other research area is to evaluate
this method for the bigger images resolution. We expect that
the method will decrease its quality, due to the exponentially
growing measurement eigen-state number. Therefore we plan
to develop our reconstruction method for the possibility of
partial image reconstruction, using the entanglement and
uncomputation methods. In this area the important think is
to elaborate the method of finding the maximum resolution
of the image, which can be reconstructed and corrected with
sufficient quality.

It is worth to say that we focused in the area of image pro-
cessing, since we are interested in developing methods from

this area. However our method of data encoding on quantum
computers, its processing, reconstruction and correction can
be applied to any massive data, in general. Therefore, it
can be treated as the method for decreasing the level of the
bottleneck appearing in the data encoding phase of quantum
computation.

Concluding, in this paper we have presented The error re-
duction method for quantum encoded images using the local
phase as the resource for this encoding. It will be utilized in
the image processing in photonic quantum solutions.

ACKNOWLEDGMENT

The authors would like to acknowledge that this paper has
been written based on the results achieved within the OptiQ
project. This Project has received funding from the European
Union’s Horizon Europe program under grant agreement
No 101080374-OptiQ. Supplementarily, the project is co-
financed from the resources of the Polish Ministry of Science
and Higher Education in the framework of the International
Co-financed Projects program.

Disclaimer: Funded by the European Union. Views and
opinions expressed are, however, those of the author(s) only
and do not necessarily reflect those of the European Union or
the European Research Executive Agency (REA – granting
authority). Neither the European Union nor the granting
authority can be held responsible for them.

REFERENCES
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