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Abstract— In this work, the authors present a comparative
analysis of quantum computers in the context of image pro-
cessing. The benchmark was performed on seven quantum
computers and one simulator. For the real quantum devices,
three different families of QPU (quantum processing units)
were used: ion-trap devices and superconducting qubits (the
IBM Falcon and Eagle series). To encode 585 images on the
quantum computers, the FRQI (Flexible Representation of
Quantum Images) and LPIQE (Local Phase Image Quantum
Encoding) methods were employed. The reconstructed images
were compared using the MSE (Mean Squared Error) and PCC
(Pearson Correlation Coefficient) metrics. The experimental
protocol was implemented in Python, using the Qiskit, SciPy,
and Geqie libraries. The results of the experiment are presented
in tabular form, as histograms, and as a correlation matrix.

This study investigated the correlation of MSE with (i) the
QPU implementation technology (i.e., between ion-trap devices
and superconducting qubits) and (ii) the type of supercon-
ducting quantum processor (Falcon vs. Eagle). Additionally,
differences in the error distributions between these QPU series
(Falcon vs. Eagle) were analyzed.

The main conclusions are as follows: a strong correlation
of MSE with the type of superconducting quantum processor
(Falcon vs. Eagle) and a moderate correlation of MSE with QPU
implementation technology (ion-trap vs. superconducting) were
demonstrated. Furthermore, it was shown that Falcon-series
processors exhibit a bimodal error distribution, whereas Eagle
processors exhibit a unimodal distribution. No correlation was
found between MSE and the error rate.

I. INTRODUCTION

One of the contemporary branches of computer science
is computer vision, which involves processing both sin-
gle images and videos. With the development of quantum
computing, quantum computers offer more efficient storage
and processing capabilities for the increasing amount of
data in computer vision. However, the physical limits of
classical computer miniaturization, as described by Moore’s
law, have led researchers to explore alternatives like quantum
computing. Despite being in the NISQ (Noisy Intermediate-
Scale Quantum) era, quantum computers can already be used
for image encoding methods such as FRQI. For instance,
encoding a Full HD video of 1.5 hours at 30 frames per
second would require only 43 qubits, which is feasible with
current quantum hardware.

A. State of Art

The field of quantum image processing has gained sig-
nificant attention as researchers explore its potential ad-

1Silesian University of Technology, Gliwice, Poland
michal.kordasz@polsl.pl

vantages over classical methods. Various studies have ex-
amined quantum computing systems and their applicability
to image processing tasks, particularly in the NISQ era.
There are approaches focus on hybrid quantum-classical
models, demonstrating improved image classification and
feature extraction capabilities through QSVM [1]. Com-
parative analyses of quantum processors have highlighted
significant discrepancies in quantum image fidelity across
different hardware platforms, with superconducting qubits
outperforming ion-trap-based systems in certain tasks [2].

The authors aim to develop a comparative analysis of
currently available quantum systems. This need is motivated
by the lack of up-to-date comparative analyses of quantum
systems.

The authors [3] note that there are no universal bench-
marks for comparing quantum systems. However, they have
presented general criteria for conducting a comparative anal-
ysis. Such a comparison must include the following features:

1) Representation of real-world problems.
2) Ease of adaptation and implementation.
In the report [4], the authors list existing methods for

comparing quantum systems:
1) Average Gate Fidelity.
2) Process fidelity.
3) Quantum Volume.
4) Algorithmic Qubits.
However, all of these metrics are limited by their inabil-

ity to compare different hardware architectures and native
quantum gate sets. While we can measure the fidelity or
the quantum volume of CNOT (controlled NOT) gates, this
does not provide information about the capacity to execute
a specific algorithm. Algorithmic qubits could, in principle,
assess the suitability of a given algorithm for implementation
on particular hardware, but they do not indicate the extent of
architectural reconfiguration required to ensure competitive
performance.

The authors hereby propose a benchmark based on:
• Comparing the fidelity of images obtained from quan-

tum computers with the originals using the MSE and
PCC metrics.

• The correlation matrix derived from the PCC results.
• MSE histograms for each of the quantum computers.
The approach presented for creating this benchmark re-

mains useful for as long as the NISQ era endures. The
authors contend that, as quantum technologies mature and the
era of Fault-tolerant quantum computing arrives, benchmarks



will be oriented toward computational power rather than
examining noise, decoherence, and error rates in quantum
computations, which are currently the dominant challenges
in NISQ devices.

1) Are there a correlation between MSE and QPU im-
plementation technology (i.e., between ion-trap and
superconducting devices)?

2) Is there a correlation between MSE and the type of
superconducting quantum processor (i.e., between the
Falcon and Eagle series)?

3) Is there a difference in the error distribution between
different QPU series (Falcon vs. Eagle)?

4) Is there a correlation between MSE and the Error Rate?

B. Contribution

The guidelines indicated by the authors [3] and [4] were
used by the authors to create a comparative analysis in
quantum computer vision, resulting in the creation of a
benchmark for quantum systems. The comparative analysis
was conducted on 7 different quantum devices and 1 simula-
tor. For this purpose, 585 images were used. The following
quantum systems were tested:

1) Falcon,
2) Eagle,
3) and an ion trap.

To encode images on a quantum computer, the FRQI [5]
and LPIQE [6] methods were used. The choice of the FRQI
method was dictated by the minimal use of qubits compared
to other image encoding methods, such as IFRQI [7], MCQI
[8], NCQI [9], NEQR [10], QRCI [11], or QUALPI [12].

Based on the obtained results, a statistical-comparative
analysis was performed, using MSE and PCC comparative
measures to compare the original images with those obtained
from the quantum computer.

The execution of the experiment would not have been
possible without the decomposition of multiply-controlled
Ry gates. This was the first limitation the authors had to
address in this work. Initially, for the decomposition of
multiply-controlled gates, the authors employed a Gray-
code–based decomposition [13] [14]. However, this approach
also introduced constraints on circuit depth (i.e., the total
number of gates), and ultimately the decision was made to
use the Geqie library [15] for image encoding.

A comparative analysis of the images encoded on the
quantum computers was then performed. To this end, the
MSE and PCC metrics were applied to compare the original
images with those reconstructed by the quantum devices.

In this section, the authors present state of the art, authors’
contribution, and the structure of the paper. In Section II,
the methodology is presented, including a description of the
image-encoding method, the comparative metrics, and the
quantum computers used in the study. Section III presents
the results of the comparative analysis of the images obtained
from the quantum computers. Finally, Section IV offers the
conclusions and a summary of the work.

II. MATERIALS AND METHODS

A. Theoretical introduction

Quantum gates are operations that can be performed on
qubits.

The mathematical construction of multi-qubit gates, such
as the CNOT gate shown in Fig. 1, requires defining all
the cases in which the gate will operate. This process is
explained step by step in Fig. 1.

Fig. 1. Constructing mulitqubit gates — i.e. CNOT gate.

1) FRQI: It is a method used for encoding images on
a quantum computer, leveraging its potential. The pixel
intensity value is encoded as a superposition of black and
white colors. The grayscale of a pixel (in the range ⟨0, 255⟩ ∈
N) is mapped to the range ⟨0, 1⟩ ∈ R. To achieve this, we
use Ry gates.

|I(θ)⟩ = 1

2n

22n−1∑
x=0

(cos θx |0⟩+ sin θx |1⟩)⊗ |x⟩ (1)

where:
θx ∈ [0,

π

2
], x = 0, 1, . . . , 22n − 1,

The FRQI method allows for efficient image storage and
manipulation on quantum computers. By encoding the pixel
values as quantum states, it is possible to perform parallel
operations on the image data, which can lead to significant
speedups in image processing tasks. The Ry gates are used
to rotate the qubit states to represent the grayscale values
of the pixels. This encoding scheme is particularly useful
for quantum image processing algorithms, such as image
compression, filtering, and pattern recognition.

One of the key advantages of FRQI is its ability to
represent an entire image using a relatively small number
of qubits. For an image of size 2n × 2n, only 2n qubits are
required plus 1 for the grayscale. This compact representa-
tion is crucial for the practical implementation of quantum
image processing algorithms on current quantum hardware,
which has limited qubit resources.



2) LPIQE method: Let’s consider an image of height
H pixels and of width W represented by a matrix Im =[
p̂r,c

]
H×W

∧r ∈ {0, . . . H−1}∧c ∈ {0, . . .W −1}∧ p̂r,c ∈
[0, 1] ∩ R, where p̂r,c is the intensity of pixel placed in
r-th row and c-th column. We can execute the (vertical)
vectorization and obtain

−→
Im = [pj ]

T , s.t. : j = rW + c (2)

Using the Encoding the constant data (described in [6]) we
can represent this form of an image with the state:

|Im⟩ =
[
eip0 . . . eipJ , 0M−J

]
=

J∑
j=0

eipj |j⟩ , (3)

J = WH − 1, M = 2⌈log2(WH)⌉

The first part of above state is the vector of WH exponential
functions of pixels intensities, the second part is a comple-
ments to quantum state’s requirement of having power of
two coefficients. This exponential functions can be treated
as local phases of a state, therefore we call it LPIQE. The
state can be obtained by an operator defined by matrix:

L̃(Im) = 1
−→
Im =


eip0 0 · · · 0
0 eip1 · · · 0
...

. . .
...

0 0 · · · eipJ

 ,

L(Im) =

[
L̃(Im)J×J 0

0 1

]
M×M

(4)

where 1 is an identity matrix / operator.
Hence this is operator that has on diagonal, the exponential

eipj of local phases being the intensities of pixels. It can be
generated, on the low level of abstraction, using the combi-
nation of multi-controlled phase shift gates and the technique
of uncomputation; however, currently available solution (e.g.
Qiskit) provides tools for defining the operator as matrix,
and the mapping it to the set of physically implemented
gates. Therefore, we can conclude that such a definition of
an operator is sufficient for current implementation.

3) Decomposition of Multiply-Controlled Gates: During
the experiment, we encountered the problem of the inability
to decompose multiply-controlled gates. In our case, the issue
concerned the C4Ry gate (a fourfold controlled Ry rotation
gate). Therefore, a manual decomposition was necessary. An
additional limitation was the restricted number of available
qubits on some quantum systems, so a decomposition tech-
nique had to be chosen that did not require extra qubits
(ancilla).

To achieve this, we used the technique proposed in [14],
which utilizes a Gray code sequence [13].

B. Image comparison metrics used in this work

The following metrics were used to compare the similarity
between images:

1) MSE [16].
2) PCC;

1) PCC: It is a metric which measures the relationship
between datasets. This function returns the value in range
⟨−1, 1⟩, where -1 indicates full anti-correlation, and 1 indi-
cates a full correlation of the datasets. Unlike MSE, PCC
uses the range ⟨−1, 1⟩ to compare the similarity between
images.

C. Quantum computers used in this work

For this study, the authors selected the quantum computers
listed in Table I for benchmarking. Because remote access
to quantum hardware incurs fees, the chosen devices were
those whose combined usage costs fully exhausted the budget
allocated to this project; accessing any additional machines
on the market would have exceeded available funds. The
careful optimization of the selection of QPUs in Table I thus
made it possible to test the largest possible number of devices
within the budgetary constraints. Unlike IBM—which pro-
vides its own Qiskit SDK (system development kit)—AWS
(Amazon Web Services) offers the Braket SDK; to avoid
code duplication, the authors used the Qiskit Provider for
Amazon Braket.

TABLE I
QUANTUM COMPUTERS USED IN THIS WORK.

Quantum
com-
puter

Qubits Quantum
Volume

1Q gate
error

2Q gate
error

QPU

AWS
Aria 1

21 N/A 0.05% 0.4% Ions trap

IBM
Sim-
ulator
Stat-
evector

32 N/A N/A N/A simulator

IBM
Brisbane

127 128 0.02% 0.7% Eagle r3

IBM
Kyoto

127 128 0.02% 0.7% Eagle r3

IBM La-
gos

7 128 0.03% 0.79% Falcon
r5.11H

IBM
Nairobi

7 128 0.03% 0.79% Falcon

IBM
Osaka

127 128 0.02% 0.7% Eagle

IBM
Perth

7 128 0.03% 0.79% Falcon
r5.11H

1) Technology of the QPUs’: The quantum computers
used in this work are based on different technologies. The
IBM QPUs (i.e. Falcon and Eagle) are based on supercon-
ducting technology, while the AWS quantum computer uses
ion trap technology.

AWS Aria 1, by IonQ, is a 21-qubit quantum computer
based on ion trap technology, utilizing Y b−171+ atoms. Yt-
terbium atoms are first ionized and then placed in an ion trap
created using oscillating voltage. All quantum operations,
starting from initialization, are performed by manipulating
the quantum states of the ions using lasers.

From the other hand, IBM quantum computers are based
on superconducting qubits. The qubits are cooled to near
absolute zero temperatures to reduce thermal noise and



decoherence. The qubits are manipulated using microwave
pulses, and the quantum gates are implemented using super-
conducting circuits.

D. The experiment

For the experiment, 585 images were used. Additionally,
for visualization purposes in the article, a photo from the
cockpit of a Boeing 737 flight simulator was used (see Fig.
2). The images were encoded in the form of a unitary matrix
on a quantum computer, then reconstructed and compared
with the original in section III.

The image similarity metrics used in this work are MSE
and PCC. The summary of the results is listed in Table II.
All the code was written in Python using the Qiskit [17],
Sci-kit image, and SciPy libraries.

Fig. 2. Example image, used for experiment.

III. RESULTS

Table II summarizes the comparison results of the obtained
images against the original, for each quantum computer used
in this study. Columns explanation:

• MSE,
• PCC,
• p-value - of PCC,
• STD - standard deviation.
Fig. 3 is a graphical representation of the results from

Table II. The plot shows the results for each metric, i.e., MSE
and PCC. The histograms given on Fig. 4 and 5 present the
distribution of squared errors for each pair of images: original
and reconstructed. Table III presents sigma intervals for the
histograms, presented in Fig. 4 and 5.

The resulting images obtained from the various quantum
computers are shown in Table 7 and 8.

Fig. 6 shows the PCC matrix between the images. Addi-
tionally, the following PPC were calculated:

• Ion trap vs IBM semiconductors QPU: 0.66,
• Falcon vs Eagle QPU: 0.72,
• MSE correlation to Error Rate: 0.07.
The resulting images obtained from the various quantum

computers are shown in Fig. 7 and 8.

IV. CONCLUSIONS

The objective of this work was to conduct a comparative
analysis of the maximum number of quantum computers that
fit within the authors’ budget. To perform the benchmark1,
seven quantum computers and one simulator were used. A

1Measure of the quality of something by comparing it with something
else of an accepted standard

TABLE II
COMPARISON OF STATISTICS OF RETRIEVED IMAGES FROM QUANTUM

COMPUTERS.

Quantum
com-
puter

MSE PCC p-value STD
MSE

STD
PCC

Simulator
Stat-
evector

76.383 0.971 0 66.850 0.014

IBM
perth

91.090 0.937 0 71.033 0.031

Aria 1 101.745 0.705 0 74.521 0.148
IBM ky-
oto

103.155 0.957 0 71.457 0.021

IBM
nairobi

107.893 0.790 0 74.748 0.105

IBM la-
gos

110.468 0.837 0 77.677 0.082

IBM os-
aka

111.380 0.677 0 75.568 0.162

IBM
brisbane

118.487 0.882 0 74.700 0.059
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Fig. 3. Statistical comparison of quantum computers.
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Fig. 4. MSE histograms of the images from various quantum computers
(1/2)
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Fig. 5. MSE histograms of the images from various quantum computers
(2/2)

TABLE III
SIGMA INTERVALS FOR THE IMAGES

image name 1-Sigma Inter-
val (%)

2-Sigma Inter-
val (%)

3-Sigma Inter-
val (%)

Aria 1 68.0 96.0 100.0
IBM brisbane 67.33 96.0 100.0
IBM kyoto 70.0 94.67 99.33
IBM lagos 64.67 98.0 100.0
IBM nairobi 64.67 95.33 100.0
IBM osaka 68.0 94.67 100.0
IBM perth 66.67 97.33 100.0
simulator stat-
evector

65.33 98.0 100.0

IBM os
aka

Aria
 1

IBM na
iro

bi

IBM br
isb

an
e

IBM la
go

s

IBM pe
rth

IBM ky
oto

sim
ula

tor
 st

ate
ve

cto
r

ori
gin

al

IBM osaka
Aria 1

IBM nairobi
IBM brisbane

IBM lagos
IBM perth
IBM kyoto

simulator statevector
original

1.00 0.51 0.60 0.57 0.63 0.64 0.67 0.69 0.68

0.51 1.00 0.66 0.56 0.66 0.68 0.72 0.71 0.70

0.60 0.66 1.00 0.51 0.78 0.78 0.79 0.82 0.79

0.57 0.56 0.51 1.00 0.72 0.83 0.86 0.86 0.88

0.63 0.66 0.78 0.72 1.00 0.88 0.90 0.90 0.84

0.64 0.68 0.78 0.83 0.88 1.00 0.93 0.95 0.94

0.67 0.72 0.79 0.86 0.90 0.93 1.00 0.98 0.96

0.69 0.71 0.82 0.86 0.90 0.95 0.98 1.00 0.97

0.68 0.70 0.79 0.88 0.84 0.94 0.96 0.97 1.00
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Fig. 6. Matrix correlation of images.
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Fig. 7. Images from various quantum computers (1/2)

(a) IBM Nairobi (b) IBM Osaka

(c) IBM Perth (d) IBM Simulator Statevector

Fig. 8. Images from various quantum computers (2/2)

total of 585 images were encoded on the quantum computers
using the FRQI and LPIQE methods. To compare the images
reconstructed from the quantum computers, the MSE and
PCC metrics were employed. The experimental protocol was
implemented in Python, utilizing the Qiskit, SciPy, and Geqie
libraries. The results of the experiment are presented in
tabular form, as histograms, and as a correlation matrix.

The research questions posed in this work were:
1) Is there a correlation between MSE and the QPU

technology (i.e., between ion-trap and superconducting
implementations)? — Yes; a moderate correlation of
0.66 was observed.

2) Is there a correlation between MSE and the type of
superconducting quantum processor (i.e., between the
Falcon and Eagle series)? — Yes; a strong correlation
of 0.72 was found.



3) Is there a difference in the error distribution between
different QPU series (Falcon vs. Eagle)? — Yes;
Falcon-series processors exhibit a bimodal distribution,
whereas Eagle is unimodal.

4) Is there a correlation between MSE and the Error Rate?
— No; essentially no correlation (0.07).

Based on the results obtained in Section III the authors
note that, as expected, the IBM Statevector quantum simula-
tor achieved the best performance in terms of both MSE and
PCC, which is consistent with the principles of the NISQ
era.

It is worth highlighting that there is a moderate corre-
lation between MSE and the underlying QPU technology.
Images reconstructed on an ion-trap quantum computer, on
average, exhibit lower fidelity than those reconstructed on
superconducting-qubit machines, as evidenced by a PCC of
0.66.

An even stronger correlation (0.72) is observed between
MSE and the specific type of superconducting quantum
processor—namely, between the Falcon and Eagle series.

Examining the MSE results for the histograms shown in
Fig. 4 and 5, one can see that the error distribution for the
Falcon series is bimodal, whereas for the Eagle series it is
unimodal. This suggests the possibility of classifying a QPU
family based solely on the shape of its MSE distribution.

When addressing technical limitations, the authors encoun-
tered difficulties in decomposing multiply-controlled gates.
One approach to overcome this is to decompose a multiply-
controlled gate into multiple singly-controlled gates using
Gray-code sequences. In this work, however, the Geqie
library was employed to generate a single unitary matrix
encoding the entire image.

Encoding images directly as a unitary matrix proves to be
the most practical solution. In this scenario, the transpiler
is responsible for converting the unitary into the native gate
set of the target quantum device, thereby sidestepping the
challenges associated with multiply-controlled gates.

The benchmark presented here directly tackles the chal-
lenges and constraints of NISQ-era quantum comput-
ers. The authors argue that, as fault-tolerant quantum
computing emerges, new challenges and limitations will
arise—necessitating the design of further benchmarks that
incorporate criteria not yet available today.
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