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Abstract—Micropayments, involving low-value transactions
(e.g., fractions of a euro/dollar), are critical for unlocking
granular digital services. In this paper we present a novel high-
level architecture integrating artificial intelligence (AI) agents
with the Bitcoin Lightning Network (LN) to enable efficient
micropayments for electric vehicle (EV) charging and peer-to-
peer energy trading. The proposed architecture leverages the
ultra fast and low-cost nature of the LN to enforce trustless
payments upon verified energy delivery. AI agents embedded
in EVs and charging stations autonomously negotiate dynamic
pricing and energy allocation using reinforcement learning (RL)
approaches, optimizing grid load balancing and enhancing prof-
itability compared to on-chain methods. Based on a compre-
hensive use case involving EV owners, operators and energy
providers, we demonstrate the system’s viability, supported by
a prototype implementation on the LN Testnet. Results show a
98.2% success rate for micropayments during simulated charging
sessions, with AI agents reducing latency by prioritizing high-
liquidity payment channels.

Index Terms—Micropayments, Lightning network, Artificial
Intelligence, Agents, Electric Vehicles

I. INTRODUCTION

Electric vehicles (EVs) are rapidly transforming global
transportation and energy ecosystems. During the last years
EVs have evolved into mobile energy storage units, thus they
can participate in a wide array of granular digital services,
from dynamic toll payments to peer-to-peer (P2P) energy
tradings [1]. Notwithstanding significant progress towards
facilitating multiple trading schemes, an urgent requirement
of enabling high-frequency, low-value transactions (micropay-
ments), still exists. Enabling such micropayments is driven
by three converging trends: (i) Decentralized Energy Markets,
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where vehicle-to-grid (V2G) networks rely on automated com-
pensation mechanisms for distributed energy contributions; (ii)
Micropayment Scalability, as on-chain transactions for per-
minute parking or per-kWh energy trades are prohibitively
slow and expensive; and (iii) Autonomy, since increasingly
intelligent EVs minimize the feasibility of manual oversight
for routine transactions.

The Lightning Network (LN) is a Layer-2 protocol built on
top of the Bitcoin blockchain, providing a promising solution
for instant, extremely cheap micropayments. By handling most
transactions off-chain, the LN avoids the congestion and high
transaction costs associated with on-chain settlements (Layer-
1) on the Bitcoin blockchain [2]. This capability is critical for
distributed energy scenarios, where EVs frequently exchange
energy with charging stations or other vehicles. Coupled with
EVs’ expanding battery capacities, the LN’s ability to handle
sub-cent payments has the potential to exemplify advanced
services, such as real-time billing and micro-compensation for
energy grid support, by providing a feasible and cost-effective
solution.

Despite the potential of EVs to enhance grid stability while
creating new revenue streams, real-time coordination of mi-
cropayments and energy trades presents significant challenges.
As EV fleets expand, the complexity of dynamic negotiations
over energy pricing, route optimization, and grid constraints
surpasses the capabilities of manual approaches. Moreover,
both on-chain micropayment solutions and traditional central-
ized systems often impose prohibitively high transaction fees,
with centralized platforms charging near-dollar or even higher
fees; on-chain solutions incurring even greater costs under
congestion, rendering them economically unviable for high-
frequency trading.

To address these challenges, we propose a three-layer



decentralized framework that seamlessly integrates bidirec-
tional charging infrastructure, autonomous Artificial Intelli-
gence (Al) agents and LN-empowered micropayments. Bidi-
rectional chargers, compliant with ISO 15118 and CHAdeMO
standards, facilitate energy exchange between EVs, buildings
and the grid. Al agents, embedded in both EVs and charg-
ing stations (CSs), are trained using reinforcement learning
(RL) to develop adaptive strategies for autonomous price
negotiation, energy allocation, and risk management (e.g.,
battery degradation, market volatility). This dual objective
supports both grid stabilization and economic viability for the
trading ecosystems. The LN, settled over Hashed Time-Locked
Contracts (HTLCs), serves as the payment mechanism within
the framework, enabling trustless, low-latency transactions
and making sub-$0.01/kWh trades feasible. By leveraging the
synergies between Al and LN, our work lays the groundwork
for decentralized energy ecosystems that capitalize on the
advanced capabilities of modern EVs. Beyond demonstrating
the high-level architecture, our work also provides empirical
evidence showcasing multi-agents ability to stabilize grid de-
mand while converging toward a profitable operational scheme
for both CSs and EVs.

II. LITERATURE REVIEW

A substantial body of the current literature has focused on
the integration of multi-agent RL frameworks to model the
complex interactions among CSs, EV users and other energy
market participants. For instance, in [3] the authors introduce
a game-theoretic multi-agent system in which fast charging
stations and EV users interact to determine personalized
electricity prices based on real-time factors. Similar multi-
agent paradigms are evident in auction-based systems where
charging stations, mobile chargers, and EVs participate in
distributed energy trading. [4] presents a hierarchical auc-
tion mechanism that uses second-price and double auction
models, while [5] and [6] model competitive pricing as non-
cooperative games and multi-leader—common-follower games,
respectively. Other novelties modeling the interfaces between
participants in such ecosystems, include exploring P2P en-
ergy trading using decentralized architectures where EVs
with energy storage and generation capabilities (prosumers)
engage in market-driven transactions [1], [7]. On the RL-
centric component implementation, recent novelties include
the integration of cluster-based grid management systems, by
modeling prosumers’ behavior through the use of double deep
Q-networks (DDQN) to coordinate trading activities while
reducing reliance on the grid [8].

Except for the decentralized architectures, other imple-
mentation venues are oriented towards developing centralized
learning - decentralized execution paradigms, as those pro-
posed in [9] which models a multi-agent demand response
system where plug-in EV (PEV) stations participate in V2G
transactions, dynamically adjusting power distribution based
on grid conditions. Other works extend agent-like frameworks
to model wireless EV charging systems, where vehicles charge
while in motion or parked, requiring real-time adjustment of

charging and discharging prices based on supply—demand fluc-
tuations [10]. In residential and multi-home energy manage-
ment systems, autonomous agents (e.g. smart homes equipped
solar photovoltaic systems, EVs) interact with a central ag-
gregator to optimize real-time pricing, energy allocation, and
battery degradation [11], [12]. Furthermore, integrated systems
that couple EV charging with building HVAC operations have
been proposed to reduce grid dependency and enhance energy
efficiency [13].

Arguably, the incorporation of RL techniques presents a
promising avenue. The choice of RL algorithm varies across
studies, reflecting the diversity of system requirements and
complexity. In particular, several works have employed clas-
sical model-free approaches such as Q-learning [3], [14] and
SARSA [14], while others leverage deep RL methods such
as Deep Q-Networks (DQN) [6], [12] and Double Deep Q-
Networks (DDQN) [15]. Policy-gradient methods, including
Proximal Policy Optimization (PPO) [13], [16], [17] and Deep
Deterministic Policy Gradient (DDPG) [11], [16], have also
been adopted to address continuous action spaces inherent
in dynamic pricing. In addition, advanced frameworks in the
literature incorporate graph-based RL techniques to capture
spatial dependencies and inter-agent influences in routing and
on-route charging guidance [18]. Blockchain and federated
learning have also emerged as promising avenues for ensuring
data privacy and security while enabling distributed learning.
For example, the authors in [19] propose a blockchain-enabled
V2X trading system that uses Proof of State of Charge
(PoSOC) to incentivize strategic energy transactions. In [20]
the authors employ a federated RL approach to optimize
bidirectional EV charging while preserving user privacy.

Dynamic pricing mechanisms often incorporate auction-
based models and game-theoretic principles to reflect market
competition. In an online continuous progressive second price
(OCPSP) auction mechanism, EV owners act as bidding
agents and the charging station allocates resources based on
bid values, therefore promoting truthful bidding and Nash
equilibrium [21]. Similarly, Stackelberg game formulations
have been used to model the interaction between electricity
markets and EV charging operators, where the leader—follower
dynamics guide pricing decisions [22]. These approaches illus-
trate how economic theories can be integrated with Al-driven
optimization to balance supply—demand and ensure equitable
energy distribution.

A recurring challenge across the literature is the design of
reward functions that encapsulate diverse objectives such as
cost reduction, grid stability, user comfort, and infrastructure
profitability. In many models, the reward functions are multi-
objective, converting various operational metrics—including
fixed infrastructure costs, SOC-based charging needs, grid
load fluctuations, and even battery degradation—into a single
utility function that drives the learning process [3], [20],
[23]. This multi-objective optimization is critical for ensuring
that the resulting pricing policies are both economically and
operationally sustainable.
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Fig. 1. A high level architecture leveraging integration of Al agents and LN

III. HIGH-LEVEL ARCHITECTURE

To facilitate the rising need of activating the prosuming
role of EVs within the grid management layers, we propose
an integrated, LN-infused architecture, capable of addressing
challenges related to the on-chain and centralized payment
solutions. Leveraging the capabilities of LN, our architecture
enables high-frequency, low-volume payments, allowing the
incorporated agents to negotiate fairly and maximize their
revenue in a trustless environment. As depicted in Figure 1, the
overall architecture consists of three layers: (i) the bidirectional
infrastructure, (ii) the Al engine and (iii) the LN, which acts
on top of the decisions made by the underlying agents, serving
the scope of value exchanges.

A. Bidirectional Infrastructure

The foundation of the proposed framework is a bidirec-
tional charging infrastructure that supports two-way energy
flow between EVs, buildings, and the power grid. Unlike
conventional setups where EVs only consume electricity, bidi-
rectional chargers compliant with standards such as ISO 15118
and CHAdeMO enable EVs to discharge stored energy back
into the grid or share it with other vehicles. This capability
transforms EVs into mobile energy reservoirs, capable of
providing on-demand power during peak load or selling excess
energy to neighbors. Beyond offering new revenue streams
for EV owners, bidirectional charging alleviates grid stress
by dynamically adjusting supply and demand. It also reduces
reliance on centralized power plants, fostering a more resilient
and sustainable energy ecosystem.

B. Al Decision Engine

An Al engine is incorporated in the proposed architecture
to orchestrate energy trading and resource allocation across
distributed EV networks. This engine is built upon the ca-
pabilities of multi-agent RL approaches, incorporating value-
based methods to model and train two types of agents (i.e.

EVs and CSs) to learn a synergistic policy that maximizes the
profit of the CSs while minimizing grid overload conditions, to
optimize the networks’ resilience. Al engine acts in real-time
operations and continuously updates bidding strategies, pricing
and routing decisions. In this manner, EVs autonomously
negotiate energy trades, respond to grid signals and manage
their charging or discharging schedules. The result is an
adaptive market mechanism that not only reduces transaction
and coordination costs but also optimizes battery health, cost
savings and the overall grid stability.

C. Lightning Network Layer

All financial transactions in the proposed framework rely
upon the LN. Through payment channels, EVs and CSs can
transmit micropayments, often amounting to fractions of a
cent, almost instantaneously and at negligible cost. Smart
contracts known as HTLCs ensure that funds are only re-
leased upon verifiable delivery of energy, effectively mitigating
counter-party risk. This trustless and distributed settlement
process is essential for high-frequency, small-value transac-
tions, such as paying per kWh of energy consumed or compen-
sating EV owners for grid stabilization services. By integrating
LN micropayments into the Al-driven trading engine and
bidirectional infrastructure, the proposed architecture delivers
a holistic solution that is both economically and technically
feasible and scalable.

IV. IMPLEMENTATION DETAILS

This section outlines the technical implementation of the
architecture’s two core components: Al agents for autonomous
decision-making and LN for trustless micropayments. The
implementation scheme is tailored to addressing the main
scenarios analyzed in Table I.

To model the ecosystems we develop two types of agents:
CSs and EVs, both operating under a Q-learning framework to
adapt their decisions dynamically. EV agents make decisions
based on their SOC, which is discretized into ten bins and can
choose to either remain idle, charge by selecting a fraction
of their available capacity or discharge through V2G. The
charging decision depends on the time-of-day pricing and the
availability of energy at different CSs, with EVs selecting the
cheapest available station, which may apply discounts when
its buffer is above a certain threshold. In contrast, V2G actions
allow EVs to sell energy back to a selected CS at a fixed rate.

CS agents, on the other hand, update their pricing dy-
namically based on grid demand and the average price
across all stations is used in computing the cost of charging.
By dynamically buying from the grid when needed, selling
to EVs at adaptive prices and accepting V2G energy, CS
agents manage energy demands and continuously update their
cost basis. The overall implementation process is built upon
the centralized learning - decentralized execution (CL-DE)
paradigm, to streamlining multiple classes of agents in a
manner that advances the overall performance of the system. In
this paradigm, learning is centralized, meaning that all agents



TABLE I
SUMMARY OF AI-DRIVEN ENERGY TRADING AND MANAGEMENT SCENARIOS IN EV ECOSYSTEMS

Scenario Objective

AT decision cactors Constraints

Residential P2P  Neighbors trade excess solar energy via EVs,
maximizing revenue while ensuring affordable

community pricing.

Surplus energy, local grid rates, time-
of-day demand.

Avoid deep discharge (SOC
> 20%), prioritize community
pricing (< grid rate).

Workplace V2G  EVs sell energy to the grid during peak hours

while reserving sufficient charge for commuting.

Grid demand signals, battery reserves,
degradation costs.

Reserve energy for commute
(SOC > 30%), avoid excessive
battery wear.

Fleet Optimiza-
tion

Delivery vans optimize energy arbitrage across
locations while ensuring route feasibility.

Route energy needs, price differentials,
battery cycles.

Meet next-day route energy
needs (SOC > 40%).

Public Charging  EVs participate in real-time bidding for charging

Urgency, competing bids, charger avail-  Bid < 150% of grid rate, avoid

Auctions slots at high-demand hubs, aiming to minimize  ability. overpaying.

costs.
Emergency EVs provide power to critical infrastructure  Energy triage, regulatory frameworks,  Allow deep discharge (SOC >
Backup (e.g., hospitals) during outages, overriding all  battery health. 10%).

other priorities.

are trained within a shared environment incorporating system-
wide metrics, while execution remains decentralized, as each
EV and CS agent makes autonomous decisions based on its
individual state and learned behavior or policy. Over time,
this reinforcement mechanism enables optimized decision-
making, ensuring scalability, adaptability and economic effi-
ciency within the energy trading system.

A. QL-based agents

The implementation of the proposed CL-DE approach is
based on the established Q-learning technique. This approach
applies Q-learning with explicit Q-tables, where each agent
updates its Q-values using the Bellman equation 1 to iteratively
refine its decision-making process.

Q(s,a) + Q(s,a) + a(r + ymax Q(s',a’) — Q(s,a)) (1)

In this context, distinct reward mechanisms are designed
for the two agent classes to effectively incentivize decision-
making based on their respective states. This differentiation
ensures that EV and CS agents align with their specific objec-
tives while maintaining overall system coordination. EV agents
receive rewards (ré@) based on energy purchase costs (C]E:t\z)
and battery degradation from discharging (Dl(q;t\Z), as these rep-
resent their two primary decision-making actions. Remaining
idle yields a reward of zero. Conversely, CS agents receive

rewards (rgs) ) based on their profit from energy sales (Rgﬁes’ i)
t)

while accounting for storage costs (Céuffer i

costs (Cﬁf,ﬁzr,i). By structuring these distinct reward functions
(see Eq. 2) within a decentralized execution paradigm, the
framework enables each agent to independently optimize its
behavior while interacting within a shared environment. This
confirms that agents learn to act optimally across different
states rather than following a predefined policy, reinforcing the
value-based learning approach, where decisions are guided by

learned Q-values instead of a centralized policy enforcement.

) and operational

— (Cg) + Dg\z) , if an action taken

- ,
0 _ 0, if idle
Ns
() _ (t) (t) (t)
Tes = Z:l (Rsales,i — “buffer,i Coper,i)
i=

2
B. Micropayments

To validate the proposed micropayment framework we
leverage the LN Testnet, a publicly available sandbox
blockchain that uses valueless Testnet Bitcoin (TBTC), thus
enabling developers to experiment with channel openings,
routing and payment flows without risking real funds.

Testnet Setup: The first step is configuring a LN
node—such as LND or Core Lightning—to connect specifi-
cally to the Testnet blockchain. Appropriate node settings (e.g.,
—bitcoin.testnet) designate which blockchain the node will in-
teract with, ensuring that any funds committed or transactions
performed remain purely for test purposes. After the node
is running, it must be funded with TBTC to open payment
channels. Testnet coins can be obtained from a community-
managed faucet—a service that provides small amounts of
TBTC at no cost. After creating a funded node, then the node
is connected to other Testnet nodes, effectively joining the
wider Testnet LN. By establishing these connections, the node
gains visibility into potential payment routes and can route
transactions to or from other participants (e.g., other EVs,
CSs).

Channel Management on Testnet: Once the node is set up
and funded, channel management is the next step. A Lightning
channel is created by committing TBTC on-chain, effectively
locking in a portion of funds for off-chain transactions. When
opening a channel to a peer (EVs, CSs, etc.) the local amount
of TBTC determines the capacity available for sending pay-
ments through that channel. To maintain operational efficiency,
channels may need rebalancing over time. For instance, if an
EV node frequently receives payments but rarely sends them,



it may accumulate the majority of liquidity on its side, limiting
its capacity to route outgoing transactions.

Simulating EV Energy Transactions: With channels open
and sufficient liquidity, the next step involves simulating
transactions that replicate real-world EV energy trades. For
instance, a bidirectional CS acting as a power seller may issue
an invoice for a specified amount of TBTC, corresponding to
a defined energy quantity (e.g., “S kWh @ 300 sat/kWh”).
The buyer, whether another CS or an EV, settles this invoice
off-chain through existing Lightning Network channels. If a
direct channel between the buyer and seller is unavailable,
the network automatically routes the payment via intermediate
nodes. These off-chain transactions are both fast and cost-
efficient, making them well-suited for the micropayments
required in EV trading scenarios. The trustless nature of these
transactions is ensured through HTLCs, which ensure that the
power seller receives payment only upon delivering the agreed-
upon energy, while the buyer’s funds remain secure until proof
of service is verified.

Testnet-Specific Tools: To streamline development and test-
ing, a variety of Testnet-specific tools are available, designed
to replicate mainnet counterparts and refine workflows. These
include: (i) Lightning Explorers, which provide graphical
dashboards displaying channel status, route availability, and
node information on the Testnet network; (ii) Faucets and
Channel-Opening Services, which offer free TBTC or pre-
funded channels to simplify the initial setup process; and
(iii)) Hosted Node Platforms, such as Voltage, which enable
seamless deployment of Testnet LN nodes with managed
liquidity and user-friendly dashboards.

V. EXPERIMENTAL EVALUATION

To provide some evidence regarding the ability of the LN-
enabled Al agents to stabilize the grid distribution network
while achieving profitable trade-offs, we first analyze a base-
line scenario. In particular, we compare two infrastructure
models for Al-driven energy trading. First, a high-fee model
is set to reflect costs incurred in traditional centralized or con-
gested cryptocurrency infrastructures, specifically by setting an
average 2.3% rate of transaction’s value. Second, an LN-based
infrastructure applies a minimal 0.0029% fee per transaction
1

The number of EV agents and CS agents is set to 1,000 EVs
and 60 CSs, respectively, considering that specific proportions
of EVs serve distinct objectives, as outlined in Table 1. The
EVs are categorized into P2P residential (20%), V2G (70%),
and fleet (10%) groups, reflecting diverse usage patterns.
Also, different baseline prices for selling electric power are
set. These prices reflect a point based on which the agents
negotiate prices in different time slots. In our case, we consider
that variations in baseline prices exist for three different slots
within a day, while further refining of pricing strategies is
allowed through offering specific discounts when an agent

ICointelegraph, “Bitcoin Lightning Network is 1,000x cheaper than
Visa and Mastercard: Data,” available at https://cointelegraph.com/news/
bitcoin-lightning-network-is- 1-000x-cheaper-than- visa-and-mastercard-data.

has excess of energy. Ultimately, to simulate an urgency-
response scenario, our framework also includes a 5% hourly
blackout probability, requiring 50 kWh of critical load cover-
age. Regarding the implementation of QL we have used the
following settings: o = 0.1,y = 0.9, to facilitate agents adapt
their charging and discharging behavior to maximize accepted
transactions, minimize costs, and stabilize the grid. For the
LN-based payments, after developing the full network form
we record a 98.2% success rate for completed transactions,
consistent with previous studies [24], which is used as fixed
rate in the implementation of the Al agents.

After conducting simulations for both payment infrastruc-
tures over a one-year period, using detailed 24-hour time
steps, we obtained the results presented in Figure 2. Notably,
within approximately two months of operation, both classes
of agents reach an optimal operating state. This is evidenced
by the stabilization of transaction volumes (Figure 2a) and
the consistency in the amount of energy traded per episode
(Figure 2b). The convergence observed within this time-frame
highlights the rapid adaptability of the proposed framework.
Another significant finding concerns the profitability of each
type of agent. As expected, the CS agents stabilize their
profitability at positive net values. Meanwhile, the EV agents,
within the same number of episodes, establish an operational
scheme that enhances their role as prosumers. This results in
near-zero profit values, indicating that while they continuously
incur costs for energy acquisition and degradation, the volume
of transactions ultimately ensures profitability.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a framework for the
implementation of intelligent multi-agent systems aimed at
maximizing the impact of EVs as prosumers. The framework
optimizes profitability and reduces fluctuations in the energy
demand from the grid. Given the great popularity of EVs,
with an estimated 300 million EVs projected globally by 2030,
the system’s scalability, facilitated by the LN’s high transac-
tion throughput (exceeding potentially 1 million transactions
per second) and the fast-convergence ability of Al agents,
positions our framework as a foundational concept for next-
generation smart grids.

Findings at a proof-of-concept level confirm the effective-
ness of value-driven multi-agent approaches in simulating a
wide range of trading EV-CS ecosystems. A key observa-
tion is the rapid convergence of energy traded within the
agent ecosystems after a relatively short number of episodes,
which indicates that energy demand from local grids could
be stabilized over time. Furthermore, the integration of the
LN within these ecosystems results in a significantly higher
volume of energy transactions compared to traditional systems.
This implies that the overall energy demand from local grids
would be substantially reduced, as more energy transactions
are handled within the decentralized LN-enabled network,
thereby alleviating pressure on centralized grid infrastructure.

Specific extensions could further enhance the framework’s
applicability. Future research should justify and discuss the
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