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Abstract—The emergence of Industry 4.0 technologies has
significantly transformed supply chain operations, particularly
through the deployment of Autonomous Guided Vehicles (AGVs)
in logistics and manufacturing settings. Integrating Industrial
Internet of Things (IIoT) devices with Artificial Intelligence (AI)
has enhanced AGV autonomy by enabling real-time data-driven
decision-making. However, challenges related to cybersecurity,
data synchronization, and scalability, still persist in cyber-
physical (CPS) manufacturing systems. Blockchain technology
offers a prominent pathway towards ensuring data integrity, de-
centralization, and security, but its adoption in AGV applications
remains limited due to scalability, latency, and computational
constraints. To address this gap, this paper proposes a hybrid,
blockchain-centric architecture that leverages the synergistic
potential of Reinforcement Learning (RL) methods in multi-
agent, collaborative AGVs. The architecture is designed to be
scalable, interoperable, and resilient to cyber threats, making it
suitable for a wide range of industrial applications.

I. INTRODUCTION

The advent of Industry 4.0 technologies has trans-

formed operations in the supply chain (SC), with mobile

robotic systems—especially Autonomous Guided Vehicles

(AGVs)—automating tasks from in-house logistics to urban

delivery coordination. Integrating various Industry 4.0 tech-

nologies is crucial for enhancing AGVs’ real-time autonomy,

prompting the development of synergistic frameworks that

boost different operational functions.

The integration of AGVs with Industrial Internet of Things

(IIoT)-enabled devices in the hardware domain combined with

the capabilities of AI methods in the software domain, has

emerged as a key approach for enhancing AGV intelligence

and operational efficiency [1]. By leveraging vast datasets

generated through real-time sensor inputs and synchronization,

AI-driven learning enables AGVs to continuously adapt to

dynamic external conditions [2]. In this regard, the synergy

between AI and IIoT is shaping a prominent pathway for

intelligent robotics, particularly through the lens of Machine

Learning (ML)-centric techniques, which are capable of ana-

lyzing diverse data types, including LiDAR, temperature, and

location sensors.

Towards their industrialization, applications in AGVs must

safeguard the human and infrastructure safety. In this re-

gard, several security concerns are raised in this domain,

which mainly encompass algorithmic processes that ensure

both appropriate mobility and data security. On the mobility

side, main efforts are centered around training AI models to

ensure human safety and optimizing performance for efficient

operations. Toward this direction, significant strides have been

made, due to the wealth of learning methods, which are

feasible to be applied in cyber-physical systems (CPSs), which

integrate AI and IIoT technologies to enhance autonomous

decision-making. However, as manufacturing ecosystems be-

come increasingly connected, cyber-security risks in IIoT net-

works, and AGVs operations continue to escalate, as industrial

robots are increasingly exposed to cyber-attacks [3]. Recent

cyber-attacks on critical infrastructure have exposed central-

ized data architectures’ vulnerabilities, raising concerns about

data integrity, unauthorized access, and operational disruptions

[4], [5]. Beyond cyber-threats, challenges in data synchroniza-

tion also persist, given the difficulties in coordinating real-

time, AI-driven schemes in legacy industrial systems.

Blockchain, holds significant promise towards safeguarding

immutability and data integrity, especially when integrated

with IIoT-enabled devices. Such synergistic schemes have

recently gained traction in industrial applications due to

their safety-aware capabilities, in terms of providing tamper-

resistant and transparent data management [6], [7]. Notwith-

standing the significance of this technology in AI-centric

applications, blockchain-based architectures remain relatively

scarce in the field of AGVs. This may be attributed to

the scalability and latency limitations inherent in blockchain

technology in high-throughput manufacturing environments,

computational overheads impacting real-time data exchange

and the absence of standardized integration frameworks with

existing industrial automation systems [8].

Notwithstanding the constraints imposed by the above fac-

tors, designing architectures that seamlessly coordinate in-

dustrial infrastructures while facilitating security and intel-

ligence aspects, holds significant promise towards achieving

the smart manufacturing paradigm. Recent approaches have

highlighted that building synergistic AI-blockchain schemes

are vital in vehicular settings [9], like those describing the979-8-3503-5348-8/24/$31.00 ©2024 IEEE



AGVs’ operations. Aligning with this perspective, we pro-

pose a novel, blockchain-centric architecture that bridges

industrialization-oriented gaps and exemplifies the Security-

as-a-Service paradigm in field of collaborative AGVs. The

theoretical contributions of the proposed architecture, are

summarized in Table I. Technically, our approach leverages

multi-agent reinforcement learning (RL) techniques to enhance

both the navigation capabilities and the real-time synergies in

the operation of AGVs.

TABLE I
SECURITY-ORIENTED CONTRIBUTIONS OF THE PROPOSED ARCHITECTURE

Challenges Description Proposed solution

Decentralized
log and

verification

Transmitting all the
data logs in the
blockchain is
computationally
intensive.

A hybrid architecture that
ensures both verifiability
(on-chain) and low latency
(off-chain) by incorporating
the IIoT-fused logs in an IPFS
module.

Secure
communi-

cation

Challenges related to
communication of
AGVs, include
interception and
authorization issues.

The architecture acts on top
of devices enhanced with
end-to-end encryption
protocols, that are coupled
with verification mechanisms
through on-chain processes.

Tamper-
proof task
allocation

AI engine-related
vulnerabilities,
including potential
manipulation of AGV
task assignments.

The architecture
accommodates hash-locked,
AI-driven decisions by
incorporating smart contracts
in its on-chain module.

II. LITERATURE REVIEW

The groundwork for implementing RL applications in multi-

robot environments was laid by [10], who first proposed a

methodology to minimize the learning space through the use of

behaviors and conditions, and deal with the credit assignment

problem in the form of heterogeneous reinforcement functions

and progress estimators. Beyond simple RL forms, cooperative

path planning is also the central in studies like [11], which

elaborates upon integrating fuzzy logic and RL approaches,

particularly by applying a fuzzy Q-learning form with a

modified Wolf-PH algorithm to address the challenges posed

by simple RL methods that typically proved effective when

applied in small and discrete state spaces.

Safety is a critical factor in autonomous motion planning.

For instance, [12] develops an approach tailored to mitigating

the lack of safety and uncontrollability challenges, often

faced by mobile robots when trained under simplistic RL

schemes. By composing multi-agent RL with control barrier

function-based shields, the authors develop a scheme capable

of advancing both planning effectiveness and scalability in

ensuring motion safety. In a similar vein, [13] proposes a

multi-mode filtering target tracking method for mobile robots

using multi-agent RL to enhance path planning, motion control

and target tracking in unknown environments. Particularly,

the paper incorporates extended Kalman filter and probability

data association to continuously update the observations and

estimate the state of each robot in real time.

A wealth of research contributions has been directed to-

wards warehouse and production automation. In this research

stream, path finding is a central theme, as illustrated in [14],

which introduces a priority-aware communication framework

using graph attention networks and a deadlock-centric RL

mechanism to dynamically adjust multi-agent path finding

in warehouse automation. In-house logistics is addressed by

[15], who incorporate multi-layer perceptrons to facilitate the

development of robust attention mechanisms that fosters the

applicability of actor-critic algorithms, by improving collision

avoidance and target accuracy in path planning. Lifelong

multi-agent path finding, crucial in large-scale warehouse

robotics, is explored by [16] who introduce a decentralized

multi-agent training framework for optimal real-time path

planning in partially observable environments. Studies model-

ing the interplays between dispatching, path planning and route

execution are also prominent in this stream of applications,

as evidenced in [17], which proposes a decentralized training

scheme in which using RL agents bid on orders based on

individual observations, enhancing adaptability in dynamic

environments. The reward sparsity problem is another area

of study in multi-agent RL systems, as discussed in [18],

which aims to enhance agent coordination by introducing a

novel rewarding mechanism. This mechanism is experimen-

tally developed through the analysis of vast state spaces,

incorporating complex actions and diverse routes to improve

learning efficiency.

Beyond the above approaches, hybrid deep RL methods

have also been explored. For instance, [19] proposes a hybrid,

master agent-like framework that integrates multi-agent and

multi-task learning, where a reflective agent assists the master

agent by utilizing second-order historical reward information

to enhance decision-making. This approach combines value-

based deep RL techniques with policy gradients, enabling

agents to reflect on past decisions and identify optimal actions

for real-time path planning in unknown environments. Policy-

based, hybrid schemes are also evident, including the hybrid,

deep RL-centric approach introduced in [20]. This approach

integrates proximal policy optimization with the dynamic

window approach; and incorporates a new cost function with

two sub-functions to model agent-goal interactions towards

optimizing decentralized multi-agent path planning.

The later research pertains to the social-awareness of AGVs’

operations. In the field of warehouse logistics, the authors in

[21] address cross-contamination risks in logistics by integrat-

ing conservative deep Q-learning into distributed multi-robot

control frameworks to optimize task allocation and minimize

human workload through optimal human-robot collaborations.

In the field of external-type, pedestrian operations, where di-

rect path planning in unfamiliar, collision-prone environments

poses challenges, some authors [22] employ neural networks

and kernel smoothing to approximate greedy actions and

improve navigation efficiency. Expanding on these methods,

the authors in [23] introduce a hybrid decentralized deep

RL framework for multi-agent path planning, where agents

independently learn using feature fusion techniques to priori-



tize vision-based information. In social-aware multi-agent RL,

the authors in [24] leverage temporal-spatial graph encoders

for enhanced field-of-view awareness, alongside a K-step

look-ahead reward system and a multi-head global attention

module, improving policy updates and adaptive multi-robot

coordination.

III. PROPOSED ARCHITECTURE

For safeguarding that the path planning decisions made

by the AGVs are immutable, verifiable and autonomously

generated by the AI module, we propose a hybrid, decen-

tralized architecture. This approach leverages the verifiability

of blockchain, while mitigating the scalability issues, often

related to the on-chain applications in the industrial settings.

A high-level overview of the proposed architecture, is depicted

in Figure 1. Evidently, our architecture comprises: (i) the in-

dustrial infrastructure, (ii) the centralized AI module; and (iii)

the Blockchain layer, each playing a decisive role in achieving

an optimally-performed, security-aware functionality for the

collaborative AGVs.

A. Industrial infrastructure

The cyber layer is designed to enhance the functionality

of the physical layer, which comprises both static elements

(machinery) and dynamic entities (humans, robots). Towards

achieving an optimal performance, the AGVs learn to col-

laborate to minimize traveled distances while maximizing

load capacity, ensuring that all allocated delivery tasks are

completed. In this regard, we assume that all AGVs are capable

of real-time mapping of the industrial environment; and that

their communication and data-sharing devices comply with

the ISO/IEC 27001 standard, ensuring end-to-end encryption

between industrial systems. On the infrastructure side, the

AGVs are assumed to be infused with LiDAR sensors for high-

precision environment perception and obstacle detection, RFID

scanners for automated inventory package identification; and

ultrasonic sensors to facilitate close-range collision avoidance

and maneuverability.

Operation-wise the AGVs handle: (i) ready-to-store and (ii)

work-in-progress (WIP) products. The first class pertains to

products that have already been manufactured, which need

to be transferred from the production station either to an

intermediate point, where another machine will transport them

to the warehouse, or to an in-house delivery point, from

which another vehicle will take over their transportation to the

final user. On the other hand, WIP products refer to partially

completed items that must be transported from one workstation

to another, where their manufacturing process will be finalized.

Towards better coordination, the AGVs exchange sensor-

informed logs, including congestion updates, location of ob-

stacles, and delivery progress, which collectively facilitate

the real-time collaboration by leveraging peer-to-peer (P2P),

encrypted protocols. These logs are incorporated into the

learning process, specifically serving as state inputs, to allow

dynamic adjustments for each agent’s policy based on real-
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Fig. 1. High level architecture

time system conditions, fostering decentralized collaboration

while maintaining efficiency in navigation and task execution.

B. AI module

An AI engine is incorporated into the proposed architecture

to manage task allocation and fleet optimization in distributed

AGV networks. This engine leverages multi-agent RL with

value-based methods to train AGVs in learning a collaborative

policy that minimizes congestion and resource conflicts, while

ensuring that all the allocated tasks are met. Operating at a

centralized level, the AI engine continuously receives sensor

logs through a vertical broker; and is equipped with decryption

mechanisms that allow for reward calculations based on real-

time evidence. Task assignments are event-driven, meaning

they are updated when a delivery is successfully completed.

After task assignment completion, each AGV executes its

own movements and local path planning autonomously, using

learned policies to navigate, avoid obstacles, and adapt to dy-

namic conditions without requiring continuous communication

with the central system.

Evidently, the proposed AI engine pertains to the Central-

ized Learning – Decentralized Execution (CL-DE) paradigm,

which is designed to facilitate a robust integration with the

Blockchain layer, to develop a seamless, yet efficient work-

flow. By implementing this architecture, the only on-chain logs

that should be secured through the use of Smart Contracts

(SMs) pertain to the actions undertaken by the agents, rather



than all the corresponding sensor logs. In this regard, our ap-

proach is lightweight and secured, since it prevents tampering

and unauthorized modifications, for any other reader except

for the AI engine.

Technically, the CL-DE is implemented by incorporating

two distinct reward mechanisms, as presented in Equation 1.

To ensure a fair and unbiased reward distribution among the

AGVs, the reward mechanism corresponding to the central

engine (Rc) is designed in an integral form, capturing the

cumulative impact of system-wide performance between two

allocation plans. Specifically, we propose the integration of

the following key performance indicators: (i) congestion levels

(Ci), (ii) energy consumption (Ei); (iii) and task completion

rates (Si) over the interval [T1, T2], to ensure that the assess-

ment of AGV effectiveness is based on a global evaluation

rather than isolated performance snapshots.

The second reward mechanism (Ri) is of a static nature,

pertaining to the overall efficiency achieved by each AGV

at a specific time (i). This mechanism is tailored to both

incentivizing collaborations (Ccollab.), ensuring accurate pick-

up (Spickup) and delivery executions (Sdel.), while avoiding

collisions (Ccoll.), minimizing unnecessary traveled distances

(dtr.), thus optimizing local energy consumption. Both of

these mechanisms are novel and tailored to facilitating the

complexities of path planning in the context of industrial

AGVs.

⎧⎪⎨
⎪⎩
Rc(T1, T2) = −

∫ T2

T1

Ci(t)dt−
∫ T2

T1

Ei(t)dt+

N∑
i=1

Si

Ri = −dtr. − Ccoll.,i + Spickup + Sdel. + Ccollab.

(1)

Both of these mechanisms should be incorporated in a

specific RL algorithm to exemplify the multi-agent, CL-

DE paradigm. A key challenge in simplified CL modules,

especially matrix-based, pertains to their scalability limits due

to high-dimensional state representations. Notwithstanding the

various, greedy techniques that have been proposed towards

overcoming such challenges, we argue that they hinder the

potential of the RL methods by over-simplifying them. On

the contrary, we believe that replacing extensive Q-tables with

Deep Q-Network (DQN), paves the way for robust approxi-

mations, thus enabling efficient learning in high-dimensional

spaces. In this regard, we propose incorporating the (Rc) into

a DQN form for centralized task allocation, in a manner that

both minimizes computational overhead due to its off-policy

nature, while allowing for fast and adaptive decisions without

exhaustive look-ups.

On the other hand, DE execution could be feasibly imple-

mented under a Q-learning scheme, as the actions that could

be undertaken by each agent are typically discrete. However,

this may not be the most suitable approach for modern AGVs,

whose capabilities extend beyond simple discrete movement

decisions to include continuous control tasks such as adaptive

speed adjustments and dynamic path planning. Given this com-

plexity, we propose a policy-based RL approach, specifically

the computationally efficient Soft Actor-Critic (SAC), which

excels in handling continuous action spaces and enables real-

time adaptability.

SAC is also an off-policy, RL technique designed for

continuous action spaces. Particularly, this technique aims at

maximizing the entropy of action spaces to ensure a balance

between exploration and exploitation. The optimization ob-

jective consists of three key components. First, the policy is

trained to maximize the expected cumulative reward while

maintaining high entropy, specifically by implementing the

Equation 2, in which R(St, At) represents the reward function,

H(π(·|St)) is the entropy term promoting stochasticity in

action selection, and α is a controlling parameter that models

the trade-offs between exploration and exploitation.

J(π) =
∞∑
t=0

E [R(St, At) + αH(π(·|St))] (2)

The second component comprises of a soft Q-function

that estimates action values while accounting for entropy. In

Equation 3, Qθ(S,A) refers to the expected return of taking

action A in state S and Vψ(S) provides a stabilized estimate

of the value function. The final component (see Eq. 4) is used

as a update mechanism, that facilitates the identification of

optimal, entropy-regularized policy at a specific time-frame.

{
Qθ(S,A) = E [R(S,A) + γES′∼p [Vψ(S

′)]] ,
Vψ(S) = EA∼π [Qθ(S,A)− α log π(A|S)] . (3)

Jπ = ES∼D [EA∼π [α log π(A|S)−Qθ(S,A)]] . (4)

The functionality that makes the SAC technique particularly

suitable for AGVs’ DE, stems from its dual Q-network archi-

tecture, which has been shown to effectively mitigate overes-

timation bias and prevent the convergence to over-simplified

policies [24]. This ensures that AGVs make more reliable

action-value estimations, leading to improved decision-making

in dynamic environments.

C. Decentralized layer

The decentralized layer in the proposed architecture is

designed in order to enhance data integrity and efficiency

in industrial AGV operations by integrating both on-chain

and off-chain mechanisms. These mechanisms can achieve

verifiability of AGV decisions along with optimized compu-

tational efficiency and the decentralized layer in the proposed

architecture is directed towards introducing enhanced data

integrity, security, and efficiency in industrial AGV operations

by introducing both on-chain and off-chain mechanisms.

The on-chain mechanism employs a permissioned

blockchain to immutably record major operational decisions

made by the AI module. All the actions taken by every

AGV, for example, path planning decisions, task execution,

and collision avoidance maneuvers, are immutably recorded

through the use of smart contracts. The decisions are,

therefore, tamper-proof and can be verified in real-time with



transparency maintained in fleet coordination. Recording

all the sensor logs and AI-generated data on-chain directly

would, however, result in significant latency and storage

overhead. To avert this, only high-level operational logs

and final decision records are kept on the blockchain for

the sake of computational feasibility without compromising

security. To supplement this, the off-chain mechanism utilizes

the InterPlanetary File System (IPFS) for the decentralized

storage of bulk sensor data and intermediate AI processing

results. Under this mechanism, AGVs are able to share and

retrieve real-time environmental data, congestion reports, and

obstacle detections without loading the blockchain.

By storing hashed metadata pointers to on-chain smart

contracts, the design ensures that all data logged is verifiable

without subjecting the blockchain to undue storage. The hybrid

design reduces latency while maintaining a secure, distributed

AGV coordination architecture. The integration of the two

mechanisms enhances the security of the architecture from cy-

ber attacks and enables AGVs to operate free from centralized

dependencies. On-chain verification and off-chain scalability

enable the system to find a balance among security, efficiency,

and flexibility under practical industrial environments. By de-

centralizing data storage and decision-making, the architecture

enables an efficient and scalable system with real-time, AI-

based AGV coordination and provable security guarantees.

IV. FUNCTIONALITY DESCRIPTION

The goal of the proposed architecture is to facilitate decen-

tralized, AI-based path planning for AGVs with data integrity

and security guaranteed through the application of blockchain

technology. The system possesses clearly defined steps of

operation, each of which plays a critical role in guaranteeing

smooth and secure AGV coordination (see Figure 2).

1

4

2

3

Perception & 
Data Acquisition

AI-based task 
allocation & Path 

Optimization

Decentralized 
execution & 

Adaptive navigation

Security Enforcement 
& Verification via 

Blockchain

System wide adaption 
& Continuous  

learning

5

System functional 
steps

Fig. 2. System functional steps

Step 1: Perception and Data Acquisition. It begins with

AGVs continuously gathering multi-modal sensory inputs to

perceive the environment. With LiDAR for spatial mapping

with high accuracy, ultrasonic sensors for collision detection

in close proximity, and RFID scanners for inventory manage-

ment automatically, AGVs generate vast amounts of real-time

data. Such data streams provide critical inputs for AI-driven

decision-making, logging environmental dynamics such as dy-

namic obstacles, congestion levels, and workspace availability.

For secure transmission, all data exchange between AGVs

and infrastructure components adheres to ISO/IEC 27001

encryption standards, protecting against unauthorized access

and cyber threats.

Step 2: AI-Based Task Allocation and Path Optimization.
Once sensor data is collected, an AI module interprets real-

time input to achieve task assignment and path optimization.

The AI module operates under a CL-DE paradigm with cen-

tralized training and decentralized autonomous execution. A

DQN algorithm implements centralized decision-making with

the utilization of historical AGV performance records in allo-

cating optimum routes. Then, the AI engine operates through

multi-agent RL for imparting collaborative fleet optimization,

load balancing, energy minimization, and responsiveness to

environmental uncertainties. Path optimization is designed

through a reward function as a composite of efficiency of task

completion, congestion minimization, and power conservation

with guaranteed globally optimum navigation strategies.

Step 3: Decentralized Execution and Adaptive Navigation.
Following task assignment, AGVs execute their travels inde-

pendently, with SAC RL for continuous motion adaptation. In

contrast to traditional discrete-action methods, SAC enables

dynamic speed control and real-time obstacle avoidance by

optimizing movement in continuous state-action spaces. Each

AGV learns to adapt its navigation policy by peer-to-peer

encrypted communication, reporting congestion and recom-

mending detours without reliance on a central server. Decen-

tralized operation in this way significantly reduces latency and

allows adaptive decision-making, enabling AGVs to maintain

efficiency even in dynamic industrial conditions.

Step 4: Security Enforcement and Verification via
Blockchain. To ensure the integrity of AGV decisions,

blockchain-based verification is supported in this step. The

permissioned blockchain, along with the smart contracts pub-

lished on it, logs important operational events, including

task completions, movement verification, and collaborative

interactions. This ensures immutability, tamper-proof audit-

ing, and traceability of AGV behavior, with no potential for

unauthorized modification. Due to the vast volume of sensor

data, raw data is not stored directly on-chain. For this purpose,

a decentralized IPFS network is used, for off-chain storage,

where cryptographic hashes are stored on the blockchain

through the use of smart contracts for verifiable data retrieval.

Step 5: System-Wide Adaptation and Continuous Learning.
In the final stage, there is ongoing learning and system

adaptation based on logged AGV performance. The AI module

ingests blockchain-verified operational logs to adjust training

models, refining RL methods to future tasks. Blockchain

ensures that only verified, tamper-resistant data is utilized for

AI retraining, improving the reliability and resilience of the

system to adversarial interference.



V. DISCUSSION AND CONCLUSIONS

The integration of AI-driven decision-making and

blockchain-driven security in industrial AGVs is a novel

approach to address the needs of autonomous navigation

and task coordination. The proposed hybrid architecture

effectively solves some key challenges in AGV deployment,

including real-time path planning, cybersecurity risks, and

decentralized coordination, using multi-agent RL and a

permissioned blockchain. By structuring the system into

distinct operational steps, the proposed architecture achieves

seamless coordination among autonomous agents and also a

verifiable, tamper-proof record of AGV operations.

A key contribution of this work is the integration of CL-DE

with a permissioned blockchain infrastructure. The AI module,

trained via multi-agent reinforcement learning (RL), learns

dynamically to optimize route planning and fleet coordina-

tion based on congestion, obstacle distribution, and energy

efficiency. The RL framework ensures fair task allocation

among AGVs, minimizing workload imbalances and bottle-

necks. SAC-based motion control enables precise, real-time

navigation in continuous state-action spaces. From a security

standpoint, blockchain adds a decentralized, immutable trust

layer for validating AGV decisions. The hybrid on-chain/off-

chain architecture addresses scalability by storing only es-

sential AGV actions on-chain and managing large sensor

data volumes via IPFS. A major advantage is scalability: the

framework adapts to growing AGV fleets, complex logistics,

and diverse cyber-physical infrastructures. Distributed, peer-

to-peer communication enhances fault tolerance and decentral-

ized coordination, reducing dependence on centralized servers

as potential failure points.

Despite its advantages, the architecture has some challenges

that need further research. The application of RL models in-

volves considerable training time and computational overhead,

which may hinder rapid deployment in real-world manufac-

turing environments. Transfer learning techniques must be

explored in future work to facilitate quicker AGV adaptation

in new factory settings. In addition, while the blockchain layer

introduces enhanced security, it also introduces latency in the

execution of smart contracts, which may impact real-time

decision-making in high-speed operational settings. Another

open problem is the need for optimization of consensus

protocols and also the efficiency of smart contract execution.
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