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Abstract—The emergence of Industry 4.0 technologies has
significantly transformed supply chain operations, particularly
through the deployment of Autonomous Guided Vehicles (AGVs)
in logistics and manufacturing settings. Integrating Industrial
Internet of Things (IIoT) devices with Artificial Intelligence (AI)
has enhanced AGV autonomy by enabling real-time data-driven
decision-making. However, challenges related to cybersecurity,
data synchronization, and scalability, still persist in cyber-
physical (CPS) manufacturing systems. Blockchain technology
offers a prominent pathway towards ensuring data integrity, de-
centralization, and security, but its adoption in AGV applications
remains limited due to scalability, latency, and computational
constraints. To address this gap, this paper proposes a hybrid,
blockchain-centric architecture that leverages the synergistic
potential of Reinforcement Learning (RL) methods in multi-
agent, collaborative AGVs. The architecture is designed to be
scalable, interoperable, and resilient to cyber threats, making it
suitable for a wide range of industrial applications.

I. INTRODUCTION

The advent of Industry 4.0 technologies has trans-
formed operations in the supply chain (SC), with mobile
robotic systems—especially Autonomous Guided Vehicles
(AGVs)—automating tasks from in-house logistics to urban
delivery coordination. Integrating various Industry 4.0 tech-
nologies is crucial for enhancing AGVs’ real-time autonomy,
prompting the development of synergistic frameworks that
boost different operational functions.

The integration of AGVs with Industrial Internet of Things
(IToT)-enabled devices in the hardware domain combined with
the capabilities of Al methods in the software domain, has
emerged as a key approach for enhancing AGV intelligence
and operational efficiency [1]. By leveraging vast datasets
generated through real-time sensor inputs and synchronization,
Al-driven learning enables AGVs to continuously adapt to
dynamic external conditions [2]. In this regard, the synergy
between Al and IlIoT is shaping a prominent pathway for
intelligent robotics, particularly through the lens of Machine
Learning (ML)-centric techniques, which are capable of ana-
lyzing diverse data types, including LiDAR, temperature, and
location sensors.
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Towards their industrialization, applications in AGVs must
safeguard the human and infrastructure safety. In this re-
gard, several security concerns are raised in this domain,
which mainly encompass algorithmic processes that ensure
both appropriate mobility and data security. On the mobility
side, main efforts are centered around training Al models to
ensure human safety and optimizing performance for efficient
operations. Toward this direction, significant strides have been
made, due to the wealth of learning methods, which are
feasible to be applied in cyber-physical systems (CPSs), which
integrate Al and IIoT technologies to enhance autonomous
decision-making. However, as manufacturing ecosystems be-
come increasingly connected, cyber-security risks in IIoT net-
works, and AGVs operations continue to escalate, as industrial
robots are increasingly exposed to cyber-attacks [3]. Recent
cyber-attacks on critical infrastructure have exposed central-
ized data architectures’ vulnerabilities, raising concerns about
data integrity, unauthorized access, and operational disruptions
[4], [5]. Beyond cyber-threats, challenges in data synchroniza-
tion also persist, given the difficulties in coordinating real-
time, Al-driven schemes in legacy industrial systems.

Blockchain, holds significant promise towards safeguarding
immutability and data integrity, especially when integrated
with IloT-enabled devices. Such synergistic schemes have
recently gained traction in industrial applications due to
their safety-aware capabilities, in terms of providing tamper-
resistant and transparent data management [6], [7]. Notwith-
standing the significance of this technology in Al-centric
applications, blockchain-based architectures remain relatively
scarce in the field of AGVs. This may be attributed to
the scalability and latency limitations inherent in blockchain
technology in high-throughput manufacturing environments,
computational overheads impacting real-time data exchange
and the absence of standardized integration frameworks with
existing industrial automation systems [8].

Notwithstanding the constraints imposed by the above fac-
tors, designing architectures that seamlessly coordinate in-
dustrial infrastructures while facilitating security and intel-
ligence aspects, holds significant promise towards achieving
the smart manufacturing paradigm. Recent approaches have
highlighted that building synergistic Al-blockchain schemes
are vital in vehicular settings [9], like those describing the



AGVs’ operations. Aligning with this perspective, we pro-
pose a novel, blockchain-centric architecture that bridges
industrialization-oriented gaps and exemplifies the Security-
as-a-Service paradigm in field of collaborative AGVs. The
theoretical contributions of the proposed architecture, are
summarized in Table I. Technically, our approach leverages
multi-agent reinforcement learning (RL) techniques to enhance
both the navigation capabilities and the real-time synergies in
the operation of AGVs.

TABLE 1
SECURITY-ORIENTED CONTRIBUTIONS OF THE PROPOSED ARCHITECTURE
Challenges | Description Proposed solution
L A hybri hi h
Transmitting all the ybrid arc tecture that
. . ensures both verifiability
Decentralized| data logs in the .
L (on-chain) and low latency
log and blockchain is . . -
verification | computationally (off-chain) by incorporating
. - the IloT-fused logs in an IPFS
intensive.
module.
Th hitect t t
Challenges related to ¢ architecture acts on top
A of devices enhanced with
Secure communication of .
. . end-to-end encryption
communi- AGVs, include
. . . protocols, that are coupled
cation interception and . . - -
. with verification mechanisms
authorization issues. .
through on-chain processes.
Al engine-related The architecture
Tamper- vulnerabilities, accommodates hash-locked,
proof task including potential Al-driven decisions by
allocation manipulation of AGV | incorporating smart contracts
task assignments. in its on-chain module.

II. LITERATURE REVIEW

The groundwork for implementing RL applications in multi-
robot environments was laid by [10], who first proposed a
methodology to minimize the learning space through the use of
behaviors and conditions, and deal with the credit assignment
problem in the form of heterogeneous reinforcement functions
and progress estimators. Beyond simple RL forms, cooperative
path planning is also the central in studies like [11], which
elaborates upon integrating fuzzy logic and RL approaches,
particularly by applying a fuzzy Q-learning form with a
modified Wolf-PH algorithm to address the challenges posed
by simple RL methods that typically proved effective when
applied in small and discrete state spaces.

Safety is a critical factor in autonomous motion planning.
For instance, [12] develops an approach tailored to mitigating
the lack of safety and uncontrollability challenges, often
faced by mobile robots when trained under simplistic RL
schemes. By composing multi-agent RL with control barrier
function-based shields, the authors develop a scheme capable
of advancing both planning effectiveness and scalability in
ensuring motion safety. In a similar vein, [13] proposes a
multi-mode filtering target tracking method for mobile robots
using multi-agent RL to enhance path planning, motion control
and target tracking in unknown environments. Particularly,
the paper incorporates extended Kalman filter and probability
data association to continuously update the observations and
estimate the state of each robot in real time.

A wealth of research contributions has been directed to-
wards warehouse and production automation. In this research
stream, path finding is a central theme, as illustrated in [14],
which introduces a priority-aware communication framework
using graph attention networks and a deadlock-centric RL
mechanism to dynamically adjust multi-agent path finding
in warehouse automation. In-house logistics is addressed by
[15], who incorporate multi-layer perceptrons to facilitate the
development of robust attention mechanisms that fosters the
applicability of actor-critic algorithms, by improving collision
avoidance and target accuracy in path planning. Lifelong
multi-agent path finding, crucial in large-scale warehouse
robotics, is explored by [16] who introduce a decentralized
multi-agent training framework for optimal real-time path
planning in partially observable environments. Studies model-
ing the interplays between dispatching, path planning and route
execution are also prominent in this stream of applications,
as evidenced in [17], which proposes a decentralized training
scheme in which using RL agents bid on orders based on
individual observations, enhancing adaptability in dynamic
environments. The reward sparsity problem is another area
of study in multi-agent RL systems, as discussed in [18],
which aims to enhance agent coordination by introducing a
novel rewarding mechanism. This mechanism is experimen-
tally developed through the analysis of vast state spaces,
incorporating complex actions and diverse routes to improve
learning efficiency.

Beyond the above approaches, hybrid deep RL methods
have also been explored. For instance, [19] proposes a hybrid,
master agent-like framework that integrates multi-agent and
multi-task learning, where a reflective agent assists the master
agent by utilizing second-order historical reward information
to enhance decision-making. This approach combines value-
based deep RL techniques with policy gradients, enabling
agents to reflect on past decisions and identify optimal actions
for real-time path planning in unknown environments. Policy-
based, hybrid schemes are also evident, including the hybrid,
deep RL-centric approach introduced in [20]. This approach
integrates proximal policy optimization with the dynamic
window approach; and incorporates a new cost function with
two sub-functions to model agent-goal interactions towards
optimizing decentralized multi-agent path planning.

The later research pertains to the social-awareness of AGVs’
operations. In the field of warehouse logistics, the authors in
[21] address cross-contamination risks in logistics by integrat-
ing conservative deep Q-learning into distributed multi-robot
control frameworks to optimize task allocation and minimize
human workload through optimal human-robot collaborations.
In the field of external-type, pedestrian operations, where di-
rect path planning in unfamiliar, collision-prone environments
poses challenges, some authors [22] employ neural networks
and kernel smoothing to approximate greedy actions and
improve navigation efficiency. Expanding on these methods,
the authors in [23] introduce a hybrid decentralized deep
RL framework for multi-agent path planning, where agents
independently learn using feature fusion techniques to priori-



tize vision-based information. In social-aware multi-agent RL,
the authors in [24] leverage temporal-spatial graph encoders
for enhanced field-of-view awareness, alongside a K-step
look-ahead reward system and a multi-head global attention
module, improving policy updates and adaptive multi-robot
coordination.

III. PROPOSED ARCHITECTURE

For safeguarding that the path planning decisions made
by the AGVs are immutable, verifiable and autonomously
generated by the AI module, we propose a hybrid, decen-
tralized architecture. This approach leverages the verifiability
of blockchain, while mitigating the scalability issues, often
related to the on-chain applications in the industrial settings.
A high-level overview of the proposed architecture, is depicted
in Figure 1. Evidently, our architecture comprises: (i) the in-
dustrial infrastructure, (ii) the centralized AI module; and (iii)
the Blockchain layer, each playing a decisive role in achieving
an optimally-performed, security-aware functionality for the
collaborative AGVs.

A. Industrial infrastructure

The cyber layer is designed to enhance the functionality
of the physical layer, which comprises both static elements
(machinery) and dynamic entities (humans, robots). Towards
achieving an optimal performance, the AGVs learn to col-
laborate to minimize traveled distances while maximizing
load capacity, ensuring that all allocated delivery tasks are
completed. In this regard, we assume that all AGVs are capable
of real-time mapping of the industrial environment; and that
their communication and data-sharing devices comply with
the ISO/IEC 27001 standard, ensuring end-to-end encryption
between industrial systems. On the infrastructure side, the
AGVs are assumed to be infused with LiDAR sensors for high-
precision environment perception and obstacle detection, RFID
scanners for automated inventory package identification; and
ultrasonic sensors to facilitate close-range collision avoidance
and maneuverability.

Operation-wise the AGVs handle: (i) ready-to-store and (ii)
work-in-progress (WIP) products. The first class pertains to
products that have already been manufactured, which need
to be transferred from the production station either to an
intermediate point, where another machine will transport them
to the warehouse, or to an in-house delivery point, from
which another vehicle will take over their transportation to the
final user. On the other hand, WIP products refer to partially
completed items that must be transported from one workstation
to another, where their manufacturing process will be finalized.

Towards better coordination, the AGVs exchange sensor-
informed logs, including congestion updates, location of ob-
stacles, and delivery progress, which collectively facilitate
the real-time collaboration by leveraging peer-to-peer (P2P),
encrypted protocols. These logs are incorporated into the
learning process, specifically serving as state inputs, to allow
dynamic adjustments for each agent’s policy based on real-
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Fig. 1. High level architecture

time system conditions, fostering decentralized collaboration
while maintaining efficiency in navigation and task execution.

B. Al module

An Al engine is incorporated into the proposed architecture
to manage task allocation and fleet optimization in distributed
AGV networks. This engine leverages multi-agent RL with
value-based methods to train AGVs in learning a collaborative
policy that minimizes congestion and resource conflicts, while
ensuring that all the allocated tasks are met. Operating at a
centralized level, the AI engine continuously receives sensor
logs through a vertical broker; and is equipped with decryption
mechanisms that allow for reward calculations based on real-
time evidence. Task assignments are event-driven, meaning
they are updated when a delivery is successfully completed.
After task assignment completion, each AGV executes its
own movements and local path planning autonomously, using
learned policies to navigate, avoid obstacles, and adapt to dy-
namic conditions without requiring continuous communication
with the central system.

Evidently, the proposed Al engine pertains to the Central-
ized Learning — Decentralized Execution (CL-DE) paradigm,
which is designed to facilitate a robust integration with the
Blockchain layer, to develop a seamless, yet efficient work-
flow. By implementing this architecture, the only on-chain logs
that should be secured through the use of Smart Contracts
(SMs) pertain to the actions undertaken by the agents, rather



than all the corresponding sensor logs. In this regard, our ap-
proach is lightweight and secured, since it prevents tampering
and unauthorized modifications, for any other reader except
for the Al engine.

Technically, the CL-DE is implemented by incorporating
two distinct reward mechanisms, as presented in Equation 1.
To ensure a fair and unbiased reward distribution among the
AGVs, the reward mechanism corresponding to the central
engine (R.) is designed in an integral form, capturing the
cumulative impact of system-wide performance between two
allocation plans. Specifically, we propose the integration of
the following key performance indicators: (i) congestion levels
(C)), (ii) energy consumption (F;); (iii) and task completion
rates (S;) over the interval [T7,T»], to ensure that the assess-
ment of AGV effectiveness is based on a global evaluation
rather than isolated performance snapshots.

The second reward mechanism (R;) is of a static nature,
pertaining to the overall efficiency achieved by each AGV
at a specific time (7). This mechanism is tailored to both
incentivizing collaborations (Cjap.), ensuring accurate pick-
up (Spickep) and delivery executions (Sge1.), while avoiding
collisions (Cqp1.), minimizing unnecessary traveled distances
(dy.), thus optimizing local energy consumption. Both of
these mechanisms are novel and tailored to facilitating the
complexities of path planning in the context of industrial
AGVs.

T T> N
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Both of these mechanisms should be incorporated in a
specific RL algorithm to exemplify the multi-agent, CL-
DE paradigm. A key challenge in simplified CL modules,
especially matrix-based, pertains to their scalability limits due
to high-dimensional state representations. Notwithstanding the
various, greedy techniques that have been proposed towards
overcoming such challenges, we argue that they hinder the
potential of the RL methods by over-simplifying them. On
the contrary, we believe that replacing extensive Q-tables with
Deep Q-Network (DQN), paves the way for robust approxi-
mations, thus enabling efficient learning in high-dimensional
spaces. In this regard, we propose incorporating the (R.) into
a DQN form for centralized task allocation, in a manner that
both minimizes computational overhead due to its off-policy
nature, while allowing for fast and adaptive decisions without
exhaustive look-ups.

On the other hand, DE execution could be feasibly imple-
mented under a Q-learning scheme, as the actions that could
be undertaken by each agent are typically discrete. However,
this may not be the most suitable approach for modern AGVs,
whose capabilities extend beyond simple discrete movement
decisions to include continuous control tasks such as adaptive
speed adjustments and dynamic path planning. Given this com-
plexity, we propose a policy-based RL approach, specifically

the computationally efficient Soft Actor-Critic (SAC), which
excels in handling continuous action spaces and enables real-
time adaptability.

SAC is also an off-policy, RL technique designed for
continuous action spaces. Particularly, this technique aims at
maximizing the entropy of action spaces to ensure a balance
between exploration and exploitation. The optimization ob-
jective consists of three key components. First, the policy is
trained to maximize the expected cumulative reward while
maintaining high entropy, specifically by implementing the
Equation 2, in which R(S;, A;) represents the reward function,
H(mw(-|S:)) is the entropy term promoting stochasticity in
action selection, and « is a controlling parameter that models
the trade-offs between exploration and exploitation.

J(m) =Y E[R(S:, Ay) + aH(n(|S1))] 2)
t=0

The second component comprises of a soft Q-function
that estimates action values while accounting for entropy. In
Equation 3, Qs (S, A) refers to the expected return of taking
action A in state S and V,(S) provides a stabilized estimate
of the value function. The final component (see Eq. 4) is used
as a update mechanism, that facilitates the identification of
optimal, entropy-regularized policy at a specific time-frame.

{Qe(& A) =E[R(S, 4) + Esrp (S,

Vip(8) = Ear [Qo(S, A) — alog w(A]S)].

Jw = ]ESND []EAN,r [Oé 10g71'(A|S) - QQ(S, A)]] . (4)

The functionality that makes the SAC technique particularly
suitable for AGVs’ DE, stems from its dual Q-network archi-
tecture, which has been shown to effectively mitigate overes-
timation bias and prevent the convergence to over-simplified
policies [24]. This ensures that AGVs make more reliable
action-value estimations, leading to improved decision-making
in dynamic environments.

C. Decentralized layer

The decentralized layer in the proposed architecture is
designed in order to enhance data integrity and efficiency
in industrial AGV operations by integrating both on-chain
and off-chain mechanisms. These mechanisms can achieve
verifiability of AGV decisions along with optimized compu-
tational efficiency and the decentralized layer in the proposed
architecture is directed towards introducing enhanced data
integrity, security, and efficiency in industrial AGV operations
by introducing both on-chain and off-chain mechanisms.

The on-chain mechanism employs a permissioned
blockchain to immutably record major operational decisions
made by the AI module. All the actions taken by every
AGYV, for example, path planning decisions, task execution,
and collision avoidance maneuvers, are immutably recorded
through the use of smart contracts. The decisions are,
therefore, tamper-proof and can be verified in real-time with



transparency maintained in fleet coordination. Recording
all the sensor logs and Al-generated data on-chain directly
would, however, result in significant latency and storage
overhead. To avert this, only high-level operational logs
and final decision records are kept on the blockchain for
the sake of computational feasibility without compromising
security. To supplement this, the off-chain mechanism utilizes
the InterPlanetary File System (IPFS) for the decentralized
storage of bulk sensor data and intermediate Al processing
results. Under this mechanism, AGVs are able to share and
retrieve real-time environmental data, congestion reports, and
obstacle detections without loading the blockchain.

By storing hashed metadata pointers to on-chain smart
contracts, the design ensures that all data logged is verifiable
without subjecting the blockchain to undue storage. The hybrid
design reduces latency while maintaining a secure, distributed
AGV coordination architecture. The integration of the two
mechanisms enhances the security of the architecture from cy-
ber attacks and enables AGVs to operate free from centralized
dependencies. On-chain verification and off-chain scalability
enable the system to find a balance among security, efficiency,
and flexibility under practical industrial environments. By de-
centralizing data storage and decision-making, the architecture
enables an efficient and scalable system with real-time, Al-
based AGV coordination and provable security guarantees.

IV. FUNCTIONALITY DESCRIPTION

The goal of the proposed architecture is to facilitate decen-
tralized, Al-based path planning for AGVs with data integrity
and security guaranteed through the application of blockchain
technology. The system possesses clearly defined steps of
operation, each of which plays a critical role in guaranteeing
smooth and secure AGV coordination (see Figure 2).
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Fig. 2. System functional steps

Step 1: Perception and Data Acquisition. It begins with
AGVs continuously gathering multi-modal sensory inputs to
perceive the environment. With LiDAR for spatial mapping
with high accuracy, ultrasonic sensors for collision detection

in close proximity, and RFID scanners for inventory manage-
ment automatically, AGVs generate vast amounts of real-time
data. Such data streams provide critical inputs for Al-driven
decision-making, logging environmental dynamics such as dy-
namic obstacles, congestion levels, and workspace availability.
For secure transmission, all data exchange between AGVs
and infrastructure components adheres to ISO/IEC 27001
encryption standards, protecting against unauthorized access
and cyber threats.

Step 2: Al-Based Task Allocation and Path Optimization.
Once sensor data is collected, an Al module interprets real-
time input to achieve task assignment and path optimization.
The AI module operates under a CL-DE paradigm with cen-
tralized training and decentralized autonomous execution. A
DQN algorithm implements centralized decision-making with
the utilization of historical AGV performance records in allo-
cating optimum routes. Then, the Al engine operates through
multi-agent RL for imparting collaborative fleet optimization,
load balancing, energy minimization, and responsiveness to
environmental uncertainties. Path optimization is designed
through a reward function as a composite of efficiency of task
completion, congestion minimization, and power conservation
with guaranteed globally optimum navigation strategies.

Step 3: Decentralized Execution and Adaptive Navigation.
Following task assignment, AGVs execute their travels inde-
pendently, with SAC RL for continuous motion adaptation. In
contrast to traditional discrete-action methods, SAC enables
dynamic speed control and real-time obstacle avoidance by
optimizing movement in continuous state-action spaces. Each
AGV learns to adapt its navigation policy by peer-to-peer
encrypted communication, reporting congestion and recom-
mending detours without reliance on a central server. Decen-
tralized operation in this way significantly reduces latency and
allows adaptive decision-making, enabling AGVs to maintain
efficiency even in dynamic industrial conditions.

Step 4: Security Enforcement and Verification via
Blockchain. To ensure the integrity of AGV decisions,
blockchain-based verification is supported in this step. The
permissioned blockchain, along with the smart contracts pub-
lished on it, logs important operational events, including
task completions, movement verification, and collaborative
interactions. This ensures immutability, tamper-proof audit-
ing, and traceability of AGV behavior, with no potential for
unauthorized modification. Due to the vast volume of sensor
data, raw data is not stored directly on-chain. For this purpose,
a decentralized IPFS network is used, for off-chain storage,
where cryptographic hashes are stored on the blockchain
through the use of smart contracts for verifiable data retrieval.

Step 5: System-Wide Adaptation and Continuous Learning.
In the final stage, there is ongoing learning and system
adaptation based on logged AGV performance. The Al module
ingests blockchain-verified operational logs to adjust training
models, refining RL methods to future tasks. Blockchain
ensures that only verified, tamper-resistant data is utilized for
Al retraining, improving the reliability and resilience of the
system to adversarial interference.



V. DISCUSSION AND CONCLUSIONS

The integration of Al-driven decision-making and
blockchain-driven security in industrial AGVs is a novel
approach to address the needs of autonomous navigation
and task coordination. The proposed hybrid architecture
effectively solves some key challenges in AGV deployment,
including real-time path planning, cybersecurity risks, and
decentralized coordination, using multi-agent RL and a
permissioned blockchain. By structuring the system into
distinct operational steps, the proposed architecture achieves
seamless coordination among autonomous agents and also a
verifiable, tamper-proof record of AGV operations.

A key contribution of this work is the integration of CL-DE
with a permissioned blockchain infrastructure. The Al module,
trained via multi-agent reinforcement learning (RL), learns
dynamically to optimize route planning and fleet coordina-
tion based on congestion, obstacle distribution, and energy
efficiency. The RL framework ensures fair task allocation
among AGVs, minimizing workload imbalances and bottle-
necks. SAC-based motion control enables precise, real-time
navigation in continuous state-action spaces. From a security
standpoint, blockchain adds a decentralized, immutable trust
layer for validating AGV decisions. The hybrid on-chain/off-
chain architecture addresses scalability by storing only es-
sential AGV actions on-chain and managing large sensor
data volumes via IPFS. A major advantage is scalability: the
framework adapts to growing AGV fleets, complex logistics,
and diverse cyber-physical infrastructures. Distributed, peer-
to-peer communication enhances fault tolerance and decentral-
ized coordination, reducing dependence on centralized servers
as potential failure points.

Despite its advantages, the architecture has some challenges
that need further research. The application of RL models in-
volves considerable training time and computational overhead,
which may hinder rapid deployment in real-world manufac-
turing environments. Transfer learning techniques must be
explored in future work to facilitate quicker AGV adaptation
in new factory settings. In addition, while the blockchain layer
introduces enhanced security, it also introduces latency in the
execution of smart contracts, which may impact real-time
decision-making in high-speed operational settings. Another
open problem is the need for optimization of consensus
protocols and also the efficiency of smart contract execution.
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