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Abstract—Maintaining balance in the electrical grid is crucial
for assuring stability, minimizing energy waste and integrating
renewable energy sources. This paper introduces a multi-agent
reinforcement learning (MARL) framework whereby Renewable
Energy Producers (REPs), BTC Miners, and Energy Manager
Agents (EMAs) interact dynamically to stabilize the grid. The
system utilizes energy market data and reinforcement learning
algorithms to motivate miners to modify their power usage habits
according to the prevailing grid circumstances. Miners, as energy
consumers within the system, enable the absorption of excess
renewable energy during low-demand periods and reduce use
during peak times to relieve grid stress. We use the proposed
MARL method in a simulated setting to assess grid stability,
profitability and energy efficiency. The findings indicate that BTC
mining can markedly reduce the volatility of the grid, improve
the profitability of the miner and facilitate the incorporation of
renewable energy.

Index Terms—Bitcoin mining, Grid, Balance, Agents, Energy

I. INTRODUCTION

The pressing need for transforming the emissions-intensive
nature of fossil-fueled electrical networks into more sustain-
able and eco-friendly forms, has recently led to the incorpora-
tion of various renewable energy sources (RES) into the energy
production mixture. In contrast to fossil-fueled energy streams
that provide a consistent and reliable electricity supply, RES
are intrinsically erratic due to their dependence on meteoro-
logical factors. Particularly, this dependence leads to energy
surpluses, resulting in curtailment, and energy deficits, which
may destabilize the system. When renewable energy (RE)
surpasses real-time demand and there is inadequate storage
or transmission capacity, surplus power is wasted. Conversely,
during times of maximum demand, wind power could not
generate enough energy to fulfill the demand, in which case
grid management must depend on backup from fossil-fueled
power systems, therefore resulting in more expenses and
greenhouse gas emissions.

Incorporating RES into the electricity production mixture
includes up-taking the risk of curtailment, a phenomenon
that often results in cost deficits and hinders the widespread
adoption of renewable energy. Although curtailment rates in
major renewable energy markets typically range from 1.5%

979-8-3503-5348-8/24/$31.00 ©2024 IEEE

Panos Chountalas Thomas K. Dasaklis

Department of Business Administration School of Social Sciences

University of Piraeus
Piraeus, Greece
0000-0003-3538-5791

Hellenic Open University
Patras, Greece
0000-0003-1240-4822

to 4%, these still represent significant losses of clean en-
ergy that could otherwise be effectively utilized. [1]. These
costs primarily stem from both the loss of energy that could
have been generated but is instead wasted and the additional
expenses required to manage grid stability. Recent shortfalls
attributed to curtailed energy are found in different countries
worldwide. For instance, in Australia, solar curtailment rose
from 4% to 7%, reaching peaks of 20% on certain days.
In Germany, grid integration issues in 2024 reduced solar
photovoltaic production by 2% [2]. In the United States, Texas
curtailed 9% of its large-scale solar power output in 2022.
China faced rising curtailment, with some provinces exceeding
10% and national rates surpassing 5% in early 2024 [3]]. Wind
energy curtailment has also escalated. The United Kingdom
saw rates fluctuate between 3.1% and 6.7%, particularly due
to transmission bottlenecks between Scotland and England.
The above curtailment figures highlight the rising need
of extending the boundaries of legacy energy production
and management systems towards incorporating elements that
could potentially act as uninterruptible energy loads. Towards
this direction, Bitcoin (BTC) mining has been recently dis-
cussed as a prominent venue capable of monetizing stranded or
excess energy sources. In particular, BTC mining and the BTC
blockchain infrastructure could be used as potent resource
monetization instruments [4]. To this end, BTC mining has
surfaced as a prospective demand-side flexibility instrument
owing to its energy-intensive but remarkably adjustable char-
acteristics. Very recent studies have investigated the viability
of integrating BTC mining with RES, particularly in using
surplus power that would otherwise be wasted [5]—[10].
Implementation-wise, the main efforts have focused on
developing deterministic, scenario-based models that optimize
the integration of BTC mining with RES based on prede-
fined operating assumptions. For instance, studies on wind
curtailment monetization [5], electricity cost management [[11]]
and mixed-integer linear programming (MILP)-based energy
scheduling [8] operate under predetermined constraints, in-
cluding historical energy curtailment levels, fixed mining up-
time and static tariff structures. Although significant, these
studies lack the ability to adapt operations dynamically to real-
time grid conditions, market variations or renewable energy
intermittency. From a methodological point of view, although



reinforcement learning (RL) has proved prominent towards
developing self-adaptive mechanisms with enhanced adaptabil-
ity, the incorporation of RL-based approaches in RES-driven
energy schemes are extremely scarce.

In this paper we propose a Multi-Agent RL (MARL) system
that models different types of agents, including Renewable
Energy Producers (REPs), Energy Manager Agents (EMAs)
and BTC Miners. The proposed MARL system operates under
the dual scope of decreasing curtailment rate and enhancing
the system’s profitability. Particularly, our model highlights
the BTC mining’s dual role as an energy consumer but also
as a proactive and intelligent energy-balancing system that is
capable of making autonomous and data-driven decisions.

II. LITERATURE REVIEW

Although research into renewable energy curtailment and its
mitigation strategies is extensive, studies specifically exploring
the integration of BTC mining into electricity grids as a
flexible load remain relatively limited. It should be noted that
BTC mining operations can be easily adjusted according to
the availability and price of electricity and, therefore, present
a possible answer to the dilemma of how to use surplus energy
at times of low energy demand or how to reduce energy
consumption when the grid is overloaded.

The authors in [5]] conducted a quantitative scenario-based
analysis to evaluate BTC mining integration with curtailed
wind energy in ERCOT (2011-2020). The study projected
energy availability, mining performance and financial returns
under fixed curtailment percentages (e.g., 3.69% in 2020, total-
ing 4.21 TWh curtailed) and predefined operational constraints
(e.g., 10,000 miners at 66.38% uptime, 1,000 miners at 93.33%
uptime). Furthermore, [7] performed a macroeconomic equi-
librium analysis to assess BTC mining’s impact on renewable
energy investments and electricity markets. Using a long-run
equilibrium framework, the study explored how BTC mining
demand influences wind and solar capacity expansion under
various market conditions. The authors in [11] conducted
a deterministic cost minimization study, developing a BTC
mining model based on historical power market prices, current
tariff structures and conventional cost reduction strategies.
They projected a possible reduction in power costs of 3%-
11% via wholesale energy procurement, 1%-7% via demand
response and up to 20% from self-generation. Nonetheless,
the methodology relied on past pricing and hence did not
take into account the real-time adjustments in BTC mining
energy usage in response to price fluctuations or variations
in regional demand. The authors in [8] used Mixed Integer
Linear Programming (MILP) scenario optimization to study
the integration of BTC mining with restricted wind and solar
energy in Texas. While Monte Carlo simulations (1000 and
5000 iterations) were incorporated to assess financial and
technical uncertainties, the study’s static modeling approach
required manual re-optimization whenever market conditions
changed, making it computationally intensive for large-scale
grid applications. Furthermore, the study found that the C-
MIN scenario resulted in a $838 million financial loss in

2020, whereas in 2021, with the same operational condi-
tions but higher BTC prices, profits reached $166.9 million,
demonstrating the model’s inability to dynamically adjust
to BTC market fluctuations. In [9] the authors conducted
a deterministic energy scheduling analysis, introducing the
Curtailment Energy Storage and Settlement (CESS) model to
evaluate Bitcoin mining as a Virtual Energy Storage System
(VESS) inside microgrid environments. The study revealed
that BTC mining might reduce annual energy curtailment from
190.8 MWh to 0.14 MWh by using surplus renewable energy
for mining activities. [[10] performed a financial feasibility
analysis, simulating the integration of BTC mining with resi-
dential photovoltaic systems. In this research, the use of BTC
mining to utilize the excess energy produced by the rooftop
solar panels led to the reduction of energy costs by 66.4%
and the return on investment (ROI) of 50.8%. However, the
BTC mining operations were performed with a rigid schedule,
which prevented the real-time adaptive load management. [|12]]
made a stochastic MILP-based location optimization study and
concluded the best location choice for BTC mining by taking
into account the power consumption, the accessibility to the
power networks and the trade-off between conventional and
RES. This research used stochastic probability distributions to
model energy price volatility and supply uncertainty; however,
it did not incorporate a dynamic learning mechanism that
is able to update the BTC mining decisions in real-time
based on the fluctuating grid conditions. Lastly, [13] made
a financial feasibility assessment to determine the feasibility
of integrating BTC mining with a solar photovoltaic (PV)
system in the UAE. The study replicated stable operational
conditions, assuming that surplus solar energy was sent into
the grid during peak periods, while BTC mining drew power
from the system during non-solar hours.

It is clear from the retrieved literature that most studies rely
upon static, pre-optimized energy allocation models. Contrary
to current approaches, this study reclassifies BTC mining as a
variable load energy consumer capable of real-time responses
to market volatility, grid stability challenges and evolving
renewable energy policy. A novel, scalable and self-optimizing
system is presented, enhancing energy monetization, grid
flexibility and economic sustainability in unpredictable power
markets using MARL decision-making.

III. HIGH-LEVEL ARCHITECTURE

To address the overarching need of optimizing the perfor-
mance of energy management systems, we propose an RL-
centric solution, which by enabling energy trading schemes
between different types of agents, facilitates the effective
management of grid towards both balancing the demand and
providing revenues through the incorporation of a BTC mining
layer. Our method elaborates upon the capacity of miners to
transform squandered energy into a valuable resource, and
provides a system-wide solution to incorporate them into grid
management systems.

For implementation purposes we draft an architectural ap-
proach which seamlessly integrates infrastructural and soft-



ware elements, as depicted in Figure [T} Specifically, our
approach models the distribution system dynamics by incorpo-
rating the following types of agents: (i) REPs, (ii)) EMA, which
act as the central module of intelligence, (iii) BTC miners; and
(iv) grid actors, which represent the main consumers of the
energy grid. Finding the optimally-performed schema, in such
a systemic approach, is quite challenging for mathematical
programming methods, thus our approach introduces a multi-
agent approach, to model the dynamics of the main operating
scenario, as described in Table [I]
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Fig. 1. A high level architecture of RL-centric energy management systems

A. Infrastructural elements

To accurately model real-world energy management sys-
tems, our approach encompasses two energy production
streams: (i) RES, including solar photovoltaic panels, wind
turbines, and geothermal power producers; and (ii) fossil-
fueled sources. As mentioned, these two streams exhibit dif-
ferent characteristics, with the renewable energy stream to be
subject to variability due to the erraticness of environmental
conditions, while the fossil-fueled stream operates at a stable,
yet pollution-intensive production rate. The energy generated
by these streams is supplied to a central buffer, which rep-
resents the EMA in our approach. The EMA has a limited
storage capacity, meaning that if the available energy exceeds
its capacity, the excess energy should either curtailed or fed
into the BTC miners. To mitigate the curtailment issue, our
architecture allows both the central buffer (EMA) and REPs
to be directly connected to BTC miners, enabling the efficient
utilization of excess energy. Both producers integrated into our
approach are considered strictly as producing agents, meaning
their decision-making primarily revolves around negotiating
the selling price of energy.

To simulate the stochastic nature of REPs (R;) we use the
Equation [T} in which 7, captures random fluctuations (e.g.,
changes in weather), and 012{ represents the variance of these
fluctuations.

Ry=Ri_1+m, n~N(0,0F) ey

B. Grid actors

The main consumers served by the system are represented
as grid actors. In our approach, grid actors encompass various

entities connected to the electricity grid, mainly including res-
idential and commercial consumers. For simulation purposes,
we model grid demand (D;) by using Equation |2| in which
D4 represents the average demand, A is the amplitude of the
fluctuation, w is the angular frequency (for example, w = 3—1
to represent daily cycles); and ¢ is the phase shift. This
assumption allows us to capture realistic variations in energy
demand, rather than relying on an over-simplified model with

fixed demand rates at specific time intervals.

Dy = Dgyg + Asin(wt + ¢) 2)

C. Energy traders: EMA & BTC miners

Beyond the above two types of agents, our approach also
models the trading interfaces between BTC miners and EMA,
to facilitate both energy stabilization and enhanced profitability
for the overall energy management system. These two types
of agents are trained towards finding an optimally-performed
trading scheme, that safeguards a stable and robust energy
distribution to consumers. Within our multi-agent approach,
these agents are represented by different reward mechanisms
that prioritize enhance profitability in the case of BTC miners;
and grid stabilization between supply and demand, in the case
of EMA. Notwithstanding their differentiated strategic orienta-
tion, when incorporated in centralized training modules, these
reward mechanisms enable agents to learn optimal patterns that
facilitate the energy monetization towards creating revenue by
the RE surpluses, that otherwise would be curtailed (especially
through BTC mining).

IV. IMPLEMENTATION DETAILS

This section outlines the implementation details of the
proposed architecture designed to model the operating scenario
presented in Table [l The primary intelligent energy trading
entity is the EMA. Its main function is to monitor the energy
production from REPs and match it with grid energy demand
to ensure optimal allocation. As part of the centralized learning
module, EMAs are integrated into a shared environment along-
side BTC miners. They use system-wide data on renewable
energy availability, grid demand, and surplus energy trends to
optimize energy distribution via a coherent training process.

The latter class of agents consists of BTC miners, which
utilize excess energy supplied by EMAs to power mining
operations. The centralized module adds a financial incentive
to energy management systems based on bitcoin miners’
potentially endless energy resource management and revenue
conversion capabilities. Particularly, it enables EMAs and BTC
miners to learn from previous negotiations and experiences,
leading them to mutually optimize their energy allocation
strategies based on the overall system state. Once the training
is completed, the system transitions to decentralized execution,
where each EMA operates autonomously, making real-time
decisions based solely on its local observations. This decentral-
ized decision-making method enables the system to adapt its
responses to renewable energy output and grid demand without
the need of a central controller.



TABLE I
SUMMARY OF GRID BALANCING AND BTC MINING SCENARIOS

Objective Al-driven trade-offs

System constraints

Utilize excess renewable en-
ergy for BTC mining while
maintaining grid stability
and preventing energy cur-
tailment.

feedback.

- Surplus Energy Determination: Difference between
renewable production (R:) and grid demand (D).

- Dynamic Grid Demand: Modeled as D; =
Asin(wt 4 ¢) to capture demand variations.
- Optimal Allocation Fraction: a; € [0, 1], optimized
via Q-learning based on state variables and reward

- Grid Supply Priority: During peak demand (R: < Dy or
low X¢), limit BTC mining (a+ =~ 0) to ensure grid stability.
- Avoid Over-Allocation: Prevent excessive BTC mining
during low-demand periods if it affects grid balance.

- Economic Viability: Ensure profitability without compro-
mising grid reliability.

Davg +

A. Learning module

The learning module employed in our approach aligns with
the established Centralized Learning—Decentralized Execution
(CL-DE) paradigm. In the first phase of centralized learning,
the central EMA is trained jointly in a unified environment that
incorporates information about the total system metrics such
as renewable production (R;), grid demand (D,), and the com-
puted surplus energy (X;). This allows the agents to establish
an integrated and synergistic strategy for energy allocation in
the training phase. They update their decision policies using
the well-established Q-learning technique, which iteratively
refines each agent’s Q-values based on the rewards they receive
for executing specific actions, by following the Equation [3]

Q(st,ar) = Q(se,ar) + A [rtEMA +ymaxQ(se41,a')

3)
—Q(st, at)}

In Equation [3] A represents the learning rate and -y is the
discount factor. By synthesizing the experiences (rewards)
received from each type of agents in a centralized matrix,
the learning module safeguards that the agents are trained
towards finding the optimally-performed policy that balances
the energy flows for the system.

Once centralized training is completed, the agents transi-
tion to the decentralized execution phase. During this stage,
each EMA operates independently, making real-time decisions
based solely on its local observation of the system state, de-
fined as s; = [Ry, D;]. The decentralized execution framework
enables faster response to fluctuations in renewable energy
production and grid demand, enhancing the scalability and
adaptability of the system.

B. Reward mechanisms

To safeguard an optimal performance for our training
module, we delve into the operation specifics of the energy
management system to design the corresponding reward mech-
anisms. For the centralized learning component, the reward
mechanism is designed to incentivize energy allocation to BTC
miners when the storage capacity in the EMA is limited while
the demand of consumers has already been met. Particularly,
we model the energy surplus in specific time-interval (¢), by
using the Equation [4a]

(4a)
(4b)

Xt = max{O, Rt - Dt}
E;nine = atXt

Based on this surplus, the EMA is trained to choose an
allocation fraction a; (where a; € [0,1]) that efficiently
determines how much of the excess energy is directed to BTC
miners, by following the Equation b} If renewable production
is lower than grid demand, (R; < D,), then X; becomes
zero, and the optimal decision is to set a; = 0, meaning
no energy is allocated to mining and all available energy is
used to meet grid demand. Conversely, when R; exceeds Dy
and X, is positive, the EMA is incentivized to decide on an
appropriate a, that balances two conflicting goals: minimizing
wasted energy and ensuring that grid demand is met.

Towards meeting this operating specifics for the EMA in
the centralized learning phase, we follow the reward function
presented in Equation [5} which is designed to penalize both
energy waste and any deficit in meeting grid demand. Since
the EMA is primarily incorporated in the centralized learning
of our framework, this reward function presents also the key
updating mechanism, as evident in Equation [3]

rEMA = —o(X; — a; X;)? — B(max{0, Dy — (Ry — a: X;)})?
(&)

In Equation [3} the term a, X, represents the energy allocated
to mining, X; — a; X, represents the portion of surplus energy
that remains unused, max{0, D; — (R; — a;X;)} quantifies
the unmet grid demand, o and 3 are weight parameters that
balance the EMA’s objectives. Specifically, o penalizes the
waste of surplus energy by incentivizing its allocation to BTC
mining, thereby promoting resource efficiency. Conversely, 3
penalizes unmet grid demand, ensuring that grid reliability
is prioritized. Adjusting these parameters allows the EMA
to control the trade-off between maximizing surplus energy
utilization for mining and fulfilling its grid support responsi-
bilities. Beyond the EMA, we also design a comprehensive
reward mechanism for the second type of agents incorporated
in the energy trading schema, specifically the BTC miners. The
rewarding of these agents is primarily designed to incentivize
their revenue-generating aspect. Specifically, these agents act
as uninterruptible loads that negotiate the price of the excess
energy with the EMA. The maximum energy load that they



could potentially receive is calculated in accordance with
Equation

In the decentralized execution phase, these agents nego-
tiate energy prices to maximize their revenue margins. To
incentivize this behavior, we implement the reward mechanism
defined in Equation [6] in which « represents the revenue per
unit of energy consumed in mining (influenced by factors such
as Bitcoin’s market price and mining efficiency); and c rep-
resents the cost per unit of energy used for mining, including
operational and electricity costs. According to this mechanism,
BTC miners aim to optimize their trading strategy to maximize
revenue across each simulated episode. Notably, these agents
are prohibited from consuming energy during peak demand
periods to prevent grid disturbances. However, they have the
capability to lock in energy quantities at predefined prices and
receive the allocated energy at a later time.

r?i““ = k(a Xt) — c(ar Xy) (6)

V. EXPERIMENTAL SET-UP AND EVALUATION

To provide some evidence regarding the applicability of the
proposed MARL framework, we orchestrate a simplistic sim-
ulation based on the operating constraints and decision factors
previously described. Regarding the constants associated with
the simulation of the energy supply and demand setting, we
have used the Equations [T] and 2] particularly by making the
following assumptions:

o The energy production scheme is hybrid, by integrating
fossil-fueled and RE sourced electric power. The maxi-
mum storage capacity of EMA is M = 120.0 MWh.

« It is assumed that the fossil-fueled stream is not subject
to volatility and its stable production capacity is Tyyuple =
80.0 MWh.

o The RE production is modeled by using Equation 1| and
assuming: R;_1; = 80.0 MWh and standard deviation of
or = 5.0 MWh.

o The grid demand is modeled by using Equation [2] and
assuming: Dy, = 130.0 MWh, A = 20 0 MWh, w =
(24-hour periodic demand); and ¢ =

o The pricing fluctuates within the execution of an episode,
starting from a base energy price of Py = 0.15
monetary units.

ﬁ

Beyond the simulation parameters, to implement the Q-
learning framework, based on Equation [3] we have designed
a discrete action space consisting of 11 possible energy allo-
cation fractions. The learning process follows a learning rate
of A = 0.1, a discount factor of v = 0.95, and an exploration
rate of e = 0.1, following an epsilon-greedy policy.

The parameters related to reward mechanisms were set in
a manner that primarily incentivize the avoidance of unmet
demand, by setting the following values in constants of Equa-
tion [5} «—0.05 for excess RE waste and § = 0.1 for unmet
demand. Regarding the BTC mining model, the cost per MWh
for mining was set at ceosr = 0.05. BTC miners adopt a pre-
scheduling strategy 30% of the time, allowing them to lock

in energy at a 10% discount (0.9P;). When pre-scheduling,
miners allocate 80% of their planned energy usage in advance.

After running our MARL framework for one hundred (100)
episodes, under the above settings, we obtained the results
presented in Figure [2] Running the model for such a con-
strained number of episodes, while limiting its overall capacity
to converge to global optima, enables us a first discussion at
a proof-of-concept level. The first part of this figure depicts
the average demand and the total energy produced by both
the REP and fossil-fueled producers. Evidently, in almost all
episodes it is observed that based on the operating settings, a
significant amount of RE is exceeded.

This means that if the multi-agent framework converges to
a curtailment-avoidance point, this excess energy should be
traded to BTC miners rather than wasted. To assess whether
this functionality holds true, we refer to the third part of Figure
As illustrated in this part, the profitability of BTC miners
follows a progressively increasing trend, which inherently
translates to the fact that the framework effectively learns a
policy that enables energy allocation, ensuring that surplus
energy is utilized in a financially viable manner rather than
being wasted.
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Fig. 2. An overall performance assessment of the proposed RL framework.

To better synthesize the agents’ functionality, we also refer
to the middle part of Figure [2, which depicts the amount of



energy traded to BTC miners within a 24-hour time frame.
These trades refer to the last episode of execution, capturing
the maximum adaptability learned by the agents. Interestingly,
these indications suggest that the framework successfully
optimizes energy allocation by dynamically adjusting the
traded surplus. The observed pattern reveals that the highest
allocations occur within the peak REP window, signifying that
the agents have learned to maximize energy utilization when
renewable generation is abundant. Beyond this indication, it
is also observed that the proportion of wasted surplus energy,
represented by the dashed black lines, is significantly limited
by at least 60%, a finding that highlights the curtailment miti-
gation and the enhance profitability achieved by the proposed
framework.

VI. DISCUSSION AND CONCLUSIONS

The integration of RES into the electrical grid poses sub-
stantial management challenges, especially because of the
intermittent nature of RES, which often leads to energy
curtailment, destabilization issues and energy loss. In this
paper we have addressed this critical problem by proposing
a MARL framework designed to dynamically balance grid
load through the strategic integration of Bitcoin (BTC) mining
operations. In particular, BTC miners serve as adjustable
energy consumers, adapting their power usage based on real-
time energy supply conditions. By employing BTC mining
operations as flexible loads, the proposed system successfully
managed excess renewable energy production, mitigating cur-
tailment losses and stabilizing the grid.

Our findings have clearly underscored the potential of BTC
miners to significantly reduce the volatility in energy grid
while at the same time enhance their profitability. Unlike
traditional scenario-based or deterministic models available in
the literature, the MARL approach provides real-time adap-
tive capability, which is essential for responding to dynamic
conditions in renewable energy generation and market prices.
The results demonstrate that surplus or excess renewable
energy, which would otherwise be wasted, can be effectively
monetized through BTC mining activities. The experimental
outcomes have underlined that agents could learn optimal
allocation patterns, aligning BTC mining operations with peri-
ods of surplus production, therefore improving the economic
viability and sustainability of energy systems incorporating
RES.

Despite these promising results, several limitations should
be kept. For instance, we conducted the simulations based on
idealized assumptions and simplified parameters (e.g., fixed
average grid demand and predefined pricing structures) and,
therefore, the immediate applicability to real-world, complex
and, arguably, volatile energy markets might be limited. Future
studies should include real power grid data with dynamic
pricing models to increase validation accuracy and market
volatility response. The suggested MARL system is unclear
about its scalability. The present technique excludes testing
for large or geographically diversified grids with varying re-
gional features and transmission restrictions. The examination

of multi-regional scenarios would illustrate the framework’s
practical viability and resilience under actual grid settings.
In addition, the processing demands of MARL hinder real-
time responsiveness in practical applications. Future research
should explore distributed RL techniques, including Federated
Learning, to enhance training efficiency and system scalability
in large-scale applications. Employing advanced economic
modeling would improve understanding and practical use
of MARL in energy management systems for BTC mining.
Finally, exploring integration with existing infrastructures and
standards like IEEE 1547 would also be a promising future
research direction.
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