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Abstract—In this paper, we propose a hybrid approach for
the optimal allocation of hospital beds to emergency patients,
tackling the common challenge of unlabeled clinical data. In-
stead of relying on predefined labels, we use a rule-based labels
step to assign initial risk levels based on key medical features.
These labels are then used to train several supervised learning
models, helping to improve risk prediction and explainability.
The predicted levels: Minimum, Moderate, or Maximum, serve
as input to an optimization model that assigns patients to beds
while reducing transfer cost and supporting infection control.
Results show promising improvements in fairness and allocation
efficiency, with a comparative study highlighting the benefits of
our method.
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Linear programming, Rules-based labels.

I. INTRODUCTION

Hospitals must continuously balance limited bed
capacity against fluctuating demand, a task that becomes
exceptionally difficult during emergencies. In such scenarios,
every admission decision must reconcile two intertwined
concerns: (i) clinical triage, which assesses each patient’s
severity and contagiousness to prevent cross-infection,
and (i) operational allocation [5], which assigns that
patient to the most appropriate bed while respecting
capacity, speciality, and isolation rules [15]. When waves
of infectious patients arrive in rapid succession, as seen
in the early stages of COVID-19, traditional ’first come,
first served’ heuristics quickly break down, causing delayed
care, especially for severe patients.

To support triage, many studies employ supervised
machine-learning (ML) models that transform raw clinical,
laboratory, or demographic features into severity scores
or risk categories. Gradient-boosted trees, support-vector
machines (SVM), logistic regression (LR), and random
forests (RF) dominate this literature. Yan et al. [7] achieved
0.95 precision in predicting COVID-19 mortality with
XGBoost, while on a small cohort. Wong and So [8]
analysed 93 variables from the UK Biobank, while SVM-
based studies by Yao et al. [10] and Sun et al. [9] obtained
accuracies around 0.80 on medium-sized datasets. Larger
investigations using LR or RF reported AUCs between 0.85
and 0.95 on cohorts of several hundred to thousands of
cases [13], [11], [12], [6]. These works demonstrate that
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ML can identify highly contagious or clinically critical
patients early, guiding isolation and treatment priorities. Yet
they stop short of turning those predictions into concrete
bed-allocation plans. Also, these methods often rely on
labeled datasets to train predictive models, which may not
always be available in real-time emergency settings, limiting
their direct applicability.

A parallel research stream addresses the Hospital Patient
Bed Assignment Problem (HPBAP) from an optimization
perspective. Because HPBAP is NP-hard [20], exact mixed-
integer programming handles only small instances; larger
hospitals rely on heuristics such as tabu search, simulated
annealing, or hyper-heuristics to minimize transport distance
[14], balance ward workloads, or enforce gender segregated
wards [3], [2], [1]. These models, however, usually assume
that each patient’s acuity and contagious level are known,
an assumption rarely valid in an emergency context.

Recognising that prediction and prescription are two
sides of the same coin, a handful of studies have begun
to couple ML outputs with optimization engines. FSchifer
et al. [4] embedded regression predictions in an integer
model; Ahmed et al. [18] combined tree ensembles with
explainable rules; and Jedidi ef al. [16] linked KNN/SVM
classifiers to a linear programming. While promising, these
hybrid approaches still depend on fully labeled training
data, even though labels are often missing, delayed, or noisy
during surges.

Table I summarises representative contributions across
three strands: pure ML triage, standalone optimization, and
early ML-optimization hybrids. The comparison highlights
a persistent gap: no existing framework simultaneously (i)
generates patient severity labels when none are available, (ii)
refines those labels with state-of-the-art classifiers, and (iii)
plugs the resulting predictions into an optimization model
that enforces infection-control constraints and minimizes
patient transfer.

This paper closes that gap. We introduce an end-to-end
decision-support system that begins with rule-based labels
to create provisional contagion-severity labels, learns from
those labels via RF, XGBoost, and LR models, and finally
feeds the predicted categories into a linear programme that
assigns patients to beds while satisfying assignment and
capacity rules and minimising transfer costs.



The rest of this paper is organized as follows: Section
2 describes the problem; Section 3 describes the hybrid
solution methodologies; Section 4 presents computational
experiments and analyses; Section 5 concludes with future
directions.

TABLE I
COMPARISON OF HOSPITAL PATIENT BED ASSIGNMENT SOLUTION

APPROACHES

Reference Labeled ML mthod Optimization ML-
Data approach optimization
hybrids

Wong and V XGBoost - -
So, 2020 [8]
Sun et al., v SVM - -
2020 [9]
Sanchez et V Logistic Re- - -
al., 2020 gression
[13]
Sumayh et V RF, others - -
al., 2020 [6]
Ahmed et Vv T-XGB, - v
al., 2022 T-ADAB,
[18] and T-MLP.

T-XGB
Schifer et v ML ILP v
al., 2023 [4] regression

approaches
Jedidi et al., v KNN, SVM LP v
2024 [16]
Proposed - Rule- LP v
Method Based +

RF/XGBoost/LR

II. PROBLEM DESCRIPTION

During public health emergencies, such as pandemics or
disaster scenarios, hospitals are often overwhelmed by the
influx of patients, particularly those in critical condition. In
such contexts, healthcare systems are pressured to allocate
limited resources, especially hospital beds, as efficiently and
ethically as possible. This situation gives rise to what is
known as the (HPBA) problem, a complex decision-making
task that involves determining how to assign patients to
appropriate beds based on medical urgency, contagiousness,
and resource constraints.

A key challenge in this setting is that patient data
upon arrival is often unlabeled, particularly in real-world
scenarios where triage decisions must be made rapidly and
with incomplete information. In the absence of explicit
severity labels, the system must infer each patient’s health
status from available clinical features such as vital signs,
symptoms, and test results. This step is crucial, as effective
patient prioritization depends heavily on correctly identifying
risk levels, typically categorized as high, moderate, or low
risk: (MAR, MER, MIR).

Once risk levels are estimated, the next challenge involves
assigning each patient to an available hospital bed, taking
into account the suitability of the bed type (e.g., critical care,

respiratory support, or general ward) and the constraints on
capacity. In this context, hospitals prioritize patients with
severe or highly contagious conditions, aiming to reduce
mortality and limit the spread of infectious diseases. Due
to the urgency of care delivery in emergencies, secondary
factors such as gender-based room separation are often
disregarded, with the primary goal being the rapid and
effective use of available beds.

The HPBA problem thus emerges as a two-phase decision
process under uncertainty: (1) classifying patients based on
severity when explicit labels are unavailable, and (2) opti-
mally allocating limited hospital beds based on the inferred
patient needs.

III. A HYBRID SOLUTION APPROACH FOR HPBAP

This paper presents a new approach to solving the HPBAP
in emergency settings that deal with the clinical urgency
and bed-type requirements to reflect the real challenges
faced in critical care scenarios. During health crises, such
as pandemics, hospital systems must rapidly and accurately
assess incoming patients, classify their risk levels, and
allocate them to appropriate and available beds. Addressing
such complexity requires integrating medical expertise,
data-driven decision-making, and optimization.

To tackle this multifaceted problem, we propose a
two-phase solution framework that starts with classifying
patients based on their clinical risk, followed by an
optimization process to assign them to suitable hospital
beds [17]. Our methodology begins by labeling patients
using a rule-based process grounded in clinical knowledge
and expert-defined thresholds. This rule-based triage
system was applied to real-world data collected from the
University Hospital in Sousse, Tunisia, between September
and December 2020, consisting of demographic, clinical,
and comorbidity information of COVID-19-positive patients.

The classification into three severity levels: Maximum
Risk (MAR), Medium Risk (MER), and Minimum Risk
(MIR), was guided by a well-defined set of clinical rules,
visualized in Figure (1). For example, patients with oxygen
saturation below 90% or systolic blood pressure lower than
90 mmHg, combined with critical symptoms such as severe
shortness of breath, were automatically labeled as MAR.
Those with moderate vitals and one or two underlying
chronic conditions, such as diabetes or hypertension, were
categorized as MER. MIR included patients with stable
vitals and no or minor symptoms. This rule-based approach
ensured consistent and reproducible triage, serving as a
basis for automated classification through machine learning.

Following the expert-driven labeling, we proceeded
to the classification phase (see figure 2). The data was
preprocessed to improve model performance and robustness.
Notably, since the dataset was imbalanced, we employed
the Synthetic Minority Over-sampling Technique (SMOTE)
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Fig. 1. An example of rule-based labeling construction

to generate synthetic samples for underrepresented classes,
ensuring that all severity categories were adequately
represented during training [19].

We then tested four machine learning algorithms:
K-Nearest Neighbors (KNN), Random Forest (RF),
Logistic Regression (LR), and Extreme Gradient Boosting
(XGBoost), each evaluated using various hyperparameter
configurations. KNN was selected for its simplicity and
effectiveness in non-linear and small-sample settings.
Random Forest provided robustness and interpretability by
aggregating decision trees and reducing overfitting. Logistic
Regression was used as a strong linear baseline and for
its ease of interpretation. XGBoost, a powerful boosting
technique, was included due to its ability to model complex
feature interactions and handle missing data efficiently [8],

(6], [9].

Once patients were classified into clinical risk groups,
namely high-risk (Pas, ), medium-risk (Pps,), and low-risk
(Pnr,)—the optimization phase was activated to assign
each patient p € P to an appropriate hospital bed » € R
for each planning day d € D, while ensuring efficient
and scalable resource usage across multiple hospitals. This
phase was formulated as a linear programming model that
aimed to minimize a total cost function composed of two
components: the cost of assigning a patient p to a bed of
type r, denoted by C), ., and the penalty cost incurred for
transferring a patient from one bed type to another on day
d, captured by a transfer indicator variable ¢, , 4, weighted
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Fig. 2. Schematic overview of the solution methodology

by a parameter Wr,..

The model used binary decision variables . 4, where
Zprq = 1 indicates that patient p is assigned to bed type
r on day d, and x,, 4 = O otherwise. Similarly, ¢, , 4 = 1
implies that patient p is transferred from bed type r on day
d. The objective function thus minimized the sum of all
assignment costs > cp. .cp gep Cpr * Tpra and transfer

penalties >°  p .cr gep Wrr * tprd-

Patient assignment followed medical prioritization rules:

o High-risk patients (p € Py, ) could be assigned to any
bed type: critical (r = 1), respiratory (r = 2), or normal
(r=3)

e Medium-risk patients (p € Pps,) were limited to
respiratory and normal beds (r € {2,3});

o Low-risk patients (p € Pys,) were restricted to normal
beds only (r = 3)

These conditions were enforced for each day d € D,,
where D, is the set of days patient p is hospitalized. Capacity
constraints were also imposed: for every bed type 7 and each
day d, the total number of patients assigned must not exceed
the number of available beds @),., ensuring Zpe pTprd <
Q.- To promote stability in patient care, the model penalized
unnecessary transfers by enforcing that any change in bed
assignment between consecutive days was reflected in the
transfer variable, i.e., if T, 4 # Tpra+1, then £, g = 1.
This optimization formulation followed a “soft constraint”
approach: while all efforts were made to satisfy constraints,
the model allowed minor violations with associated penalties
to simulate real-world healthcare variations under pressure.

IV. EXPERIMENTAL RESULTS

This section presents the results obtained from our
classification models applied to the patient severity
classification task. The experiments were conducted
following the methodology described earlier. The dataset
was collected from the University Hospital in Sousse,
Tunisia, and includes 20 instances across four configurations
(Smalll, Small2, Largel, Large2), with patient numbers
ranging from 76 to 1500 and bed distributions of (BEDI:
12-16 for critical care, BED2: 13-22 for respiratory care,
BED3: 38-78 for normal care) over a 7-day period. In
the largest configuration (Large2), there are 1500 patients
divided into 893 MaxRisk, 570 MediumRisk, and 27
MinRisk cases, based on rule-based labeling strategies
applied to clinical and demographic indicators. The dataset
comprises clinical signs (e.g., temperature, SpO2, SOB),
demographics (e.g., age, gender), and chronic illnesses.

Figure 3(a) illustrates the original distribution of patients
across the three severity classes. The dataset is clearly
imbalanced, with class O (high severity) comprising 60%,
class 1 (moderate severity) 38.2%, and class 2 (low
severity) only 1.8% of the data. Such imbalance can lead
to classifiers being biased toward predicting more frequent
classes, potentially overlooking low-risk cases that are



important for effective hospital resource management.

To mitigate this issue, we applied the SMOTE (Synthetic
Minority Over-sampling Technique), which synthetically
generates samples for the minority classes. As shown in
Figure 3(b), SMOTE effectively rebalanced the dataset,
leading to a uniform distribution of 33.3% across all three
classes. This preprocessing step is essential to ensure fair
model training and robust evaluation, especially when
relying on metrics such as F1-score and recall, which are
particularly informative under class imbalance conditions.

We evaluated the classification performance using four
widely adopted machine learning models: K-Nearest
Neighbors (KNN), Random Forest, XGBoost, and
Logistic Regression. For each model, we performed
hyperparameter tuning using cross-validation to identify
optimal configurations and ensure robust and generalized
model performance. In table 4 (a), metrics are reported from
a single evaluation (likely on a hold-out test set), whereas
table 4 (b) presents macro-averaged scores using 5-fold
cross-validation, which provides a more reliable estimate of
generalization.

e KNN: Tested values for the number of neighbors
kE € {3,5,7,11,19}. The best performance was
achieved with £ = 5, balancing bias and variance.
Despite its simplicity, KNN showed moderate
performance (Accuracy: 0.7533, Fl-macro: 0.6078)

Percentage of patient contagious state per Class Percentage of balanced patient contagious state per Class

0
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Fig. 3. (a) % of patient risk levels per class, (b) % of balanced patient
risk levels per class

(a)

Model Accuracy Recall (macro) Fl-score (macro)

] KNN 8.7533 6.7883 0.6078
1 Random Forest @.9867 08.9522 9.9693
2 XGBoost 09.9933 09.9963 ©.9953
3 Logistic Regression 0.7600 08.6733 0.6389

(b)

Modéle Fl-macro (CV) Recall-macro (CV) Accuracy (test)

-] Random Forest ©.9842 0.9936 9.9822

1 XGBoost 0.9896 0.9986 0.9911

2 Logistic Regression 8.5997 8.7019 ©.7578

3 KNN 9.5704 0.6420 8.7778
Fig. 4. Model Performance Comparison: With (b) vs Without (a) Cross-
Validation

before SMOTE, which improved post-balancing
(Accuracy: 0.7778).
« Random  Forest: Evaluated across different

n-estimators € {100,200,500} and maz_depth €
{5,10,20}. Using cross-validation, the best result
was obtained with n_estimators = 500 and

maz_depth = 10, achieving an impressive Accuracy
of 0.9867 and F1-macro of 0.9693.

e XGBoost: Fine-tuned using cross-validation across
learning_rate € {0.01,0.1,0.2}, max_depth €
{3,6,9}, and n_estimators € {100,200}. The
configuration (learning.rate = 0.1, max_depth =
6, n_estimators = 200) delivered the best results, with
Accuracy: 0.9933 and F1-macro: 0.9953, outperforming
all other models.

o Logistic  Regression: Tested with different
regularization parameters C € {0.01,0.1,1,10}
and solvers (liblinear, saga). The best performance was
achieved with C' = 1, selected through cross-validation.
However, this model consistently underperformed
compared to others, with Fl-macro around 0.6389,
indicating limited ability to capture complex nonlinear
relationships in the data.

Across both pre- and post-balancing scenarios, XGBoost
and Random Forest consistently outperformed the other
models in terms of macro F1-score and recall. XGBoost
shows a slight drop in accuracy (from 0.9933 to 0.9911)
with cross-validation but retains exceptional F1 and recall
scores, confirming its superiority. KNN and Logistic
Regression, however, show more noticeable drops in recall
and Fl-macro under cross-validation, indicating sensitivity
to data variation and less stability across folds.

Compared to existing works [16] in which patients are
classified using the same set of features and only KNN
and SVM models with various kernels are tested, showing
that KNN with k=7 performs best with an accuracy of
0.94, our approach demonstrates superior performance. By
introducing rule-based labels and applying data balancing
techniques (SMOTE), our XGBoost-based model achieves
even higher accuracy and better recall across all classes,
confirming the added value of our method for real-world
healthcare classification scenarios.

In summary, the application of SMOTE significantly
improved classifier fairness and predictive power across all
classes. Among the evaluated models, XGBoost emerged
as the most effective, followed closely by Random Forest,
making them well-suited for deployment in real-world
hospital triage systems.

In the final stage of our methodology, we integrated the
classification results into an optimization model aimed at



assigning patients to appropriate bed types based on their
severity levels. For large datasets, around 57

The assignment process was implemented using IBM
ILOG CPLEX Optimization Studio v12.10, treating it as a
resource-constrained optimization problem. In smaller data
instances 1 and 2, the optimization model successfully admit-
ted between 85% and 100% of critical patients, demonstrat-
ing strong performance under manageable demand. However,
in larger datasets, the admission rates for high-risk patients
dropped significantly to around 55% and 43% for Large
sets 1 and 2, respectively. This decline reflects the increased
competition for limited beds and the strain placed on hospital
resources.

Additionally, the optimization cost increased substantially
by around 10% compared to short and large sets, and com-
putational time doubled, rising from 6.71 to 10.87 seconds.
These results demonstrate a significant improvement of our
model compared to existing approaches in the literature
[16]. Specifically, our model increased the admission rate
of critical patients from 20% in traditional methods to 43%,
showcasing a greater capacity to handle high demand.

V. CONCLUSION

This study tackled the pressing issue of patient
severity classification and bed allocation in emergency
healthcare settings, where data is often unlabeled and
highly imbalanced. We proposed a robust methodology
that integrates rule-based labeling, SMOTE for dataset
balancing, and supervised machine learning models to
accurately classify patient risk levels.

Our experiments demonstrated the critical importance
of cross-validation for both hyperparameter tuning and
performance evaluation. Among the four models tested,
K-Nearest Neighbors (KNN), Random Forest, XGBoost, and
Logistic Regression. XGBoost consistently outperformed the
others in terms of accuracy, recall, and Fl1-score, showing
high robustness and generalization, particularly under 5-fold
cross-validation.

In future developments, we plan to incorporate the classi-
fication output into a bi-objective optimization model that
considers both patient severity and transportation costs.
This extension will aim to optimize real-world hospital
bed assignments by prioritizing critical patients while also
minimizing delays and travel distances, ultimately improving
emergency response efficiency.
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