Clustering-Based Optimization for Emergency Patient Bed Assignment
Problem

Hela Jedidi''2, Hajer Ben-Romdhane?, Issam Nouaouri®, Saoussen Krichen?

Abstract— This study addresses the critical challenge of hos-
pital bed assignment during emergencies by introducing a two-
stage combining unsupervised learning and optimization. In the
first stage, clustering techniques (K-means, GMM, DBSCAN,
and HDBSCAN) are employed to automatically categorize
patients into different risk levels based on clinical features,
eliminating the need for labeled training data. In the second
stage, a linear programming model optimizes the assignment of
patients to hospital beds by minimizing costs while respecting
capacity limits and medical priority constraints. The proposed
approach is tested and validated on instances derived from
real-world datasets from Tunisian hospitals. Our proposal
approach significantly reduces the data preprocessing workload
while ensuring effective prioritization of critical cases across
both small and large-scale scenarios. Additionally, the optimal
number of clusters is determined through silhouette analysis,
enhancing the clinical relevance of the patient clutering.

Keywords: Unsupervised learning, Patient clustering,
Emergency bed assignment, Linear programming, Re-
source allocation.

I. INTRODUCTION

In late 2019, a novel coronavirus (SARS-CoV-2) emerged
in Wuhan, China, raising a global crisis that deeply disrupted
healthcare systems [12]. This highly contagious disease
primarily attacks the respiratory system and spreads rapidly
between individuals [10]. Within weeks, cases were reported
across 216 countries, and by March 11, 2020, the World
Health Organization (WHO) officially declared COVID-19 a
deadly disease caused by SARS-CoV-2 [12].

The rapid spread of COVID-19 exposed significant weak-
nesses in healthcare infrastructures, particularly in Tunisia.
Hospitals and medical facilities were unprepared for the sud-
den surge in patient numbers, resulting in an overwhelming
demand for critical resources, especially in hospital beds
[14]. Emergency departments (EDs) and intensive care units
(ICUs) reached full capacity, forcing healthcare providers to
make urgent and often difficult decisions regarding patient
prioritization. In this context, the challenge of resource
allocation emerged, focusing on assigning patients to beds
according to their medical condition to ensure that limited
resources could be managed efficiently and equitably during
the pandemic.

This work introduces a novel integrated solution that com-
bines clustering and optimization techniques. It begins by
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segmenting patients into distinct clusters based on similari-
ties in their medical conditions, identifying distinct levels of
patient risk ranging from mild to critical cases, before assign-
ing them to a specific bed. This risk stratification step enables
healthcare providers to prioritize hospital admission for high-
risk patients, particularly when resources such as hospital
beds are limited. In the subsequent phase, we formulate an
optimization problem that allocates these patient groups to
appropriate hospital beds according to their risk levels. We
solve the Patient Bed Assignment Problem (PBAP) using an
exact approach to guarantee optimal utilization of available
resources while respecting patient priorities and hospital
constraints.

The present paper is organized as follows. Section 2 presents
a review of the relevant literature on this topic. Section 3
provides a detailed description of the problem and its mathe-
matical formulation. Section 4 outlines the proposed solution
methodology. The computational results are presented in
Section 5 to illustrate our approach. The last section details
our concluding remarks.

II. RELATED LITTERATURE

This section reviews the main research in patient severity
assessment and hospital bed assignment, especially during
pandemics. We start by exploring approaches using su-
pervised learning for patient risk prediction, followed by
unsupervised clustering techniques for patient stratification.
Finally, we explore optimization models designed to tackle
PBAP.

In line with this focus, numerous studies have applied Ma-
chine Learning (ML) techniques to predict patient medical
conditions, both during pandemics and routine emergency
department triage, using clinical features to enhance patient
care and optimize bed assignment [4]. In 2020, Yan et al.
[5] developed an XGBoost model based on specific clini-
cal features to predict death risk, achieving high precision
despite limited data. Similarly, Yao et al. [6] employed
Support Vector Machines to classify patients into severe and
mild categories using clinical and laboratory characteristics.
Other work, Schifer et al. [3] employed supervised and
unsupervised learning approaches on labeled and unlabeled
data to evaluate and predict the severity and criticality of the
contagious state of patients. However, most of these models
focus on binary classification (e.g. mortality vs. recovery)
[7]; there remains a critical need for a finer segmentation of
patients, according to the severity of their health status, to
ensure the prioritization and assignment of severe patients
in hospital beds. This limitation becomes especially critical



during pandemics, where data patterns are often unclear due
to the evolving nature of the disease. In such cases, clustering
techniques provide a valuable alternative. Unlike supervised
methods, which depend on labeled data, clustering can reveal
hidden patterns in unlabeled datasets, grouping patients into
meaningful categories based on their clinical features.

Few studies have applied clustering when labeled data is
limited, yet these techniques are useful for identifying hidden
patterns during emergencies. Sadegh et al. [7] used SOM
and K-means to cluster patients based on symptoms and
outcomes, revealing that while severe symptoms were more
common in fatal cases, they didn’t always lead to death;
age affected ICU stays, while sex had no impact. Boutazart
et al. [8] clustered death, confirmed, and recovered cases
using K-means and EM, showing that GMM offered more
stable insights than K-means alone. Moreover, Julian et al.
[9] applied X-means to four key clinical tests, identifying
three severity-based clusters. Similarly, Chaudhary et al.
[11] combined PCA with K-means to detect cross-country
communities linked to virus spread.

While these studies effectively applied clustering, they did
not focus on grouping patients based on the severity of their
health condition, a crucial aspect that our research seeks to
address, looking for facilitating the assignment of patients to
specific beds based on their risk levels, in emergency situa-
tions. In this regard, the PBAP has evolved with numerous
extensions. In the static model, elective patients are allocated
to beds for a specified duration, subject to constraints cate-
gorized as either hard (strictly enforced) or soft (flexible),
based on their characteristics [1]. Given that the PBAP
problem is NP-hard [2], various solution approaches have
been investigated, including exact algorithms [13] as well as
heuristic methods [14]. Furthermore, some researchers have
combined supervised learning and optimization techniques
to enhance assignment efficiency and reduce costs [3], [15].
In contrast to previous studies that address patient grouping
and hospital bed assignment as separate challenges, our
work combines these two problems by proposing a hybrid
framework that integrates unsupervised learning for severity-
based patient clustering with an exact optimization model for
bed allocation. This combined approach ensures that patients
are prioritized not only based on their clinical condition
but also in accordance with hospital resource constraints, a
dimension rarely addressed in the reviewed literature.

III. PROBLEM STATEMENT

In the context of the COVID-19 pandemic, hospitals
face the critical challenge of efficiently assigning beds to
patients with varying levels of severity, while considering
the limited bed capacity. The problem of assigning patients
to specific beds, taking into account the urgency of their
condition, is referred to as the Hospital PBAP (HPBAP). In
this scenario, the objective is to group patients according to
their clinical characteristics, which reflect their risk level, and
then optimize the assignment of beds accordingly.

Patients are admitted to the hospital upon arrival according to
their health condition, which is determined by a set of clinical

features such as respiratory distress, oxygen saturation levels,
comorbidities, etc. Given the urgency and uncertainty of the
situation, clustering methods are used to group patients with
similar clinical conditions and risk levels, without knowing
the number of groups in advance. The goal is to determine
natural groupings of patients based on these features, which
then inform the decision on how to assign them to available
beds.

Suppose that five COVID-19 patients arrive at a hospital
during the pandemic, each presenting different clinical char-
acteristics reflecting varying levels of severity. The hospital
faces a critical shortage of resources, with a limited number
of available beds corresponding to different care levels, such
as ICU beds, respiratory beds, and normal beds. In this con-
text, the number of patient groups is not predefined; instead,
a clustering approach is applied to their clinical features to
automatically identify natural groupings that reveal distinct
risk levels.

After performing the clustering process, patients may be
categorized into different severity groups, for example, two
patients with high-risk and three patients with moderate-
risk, depending on the observed similarities in their clinical
profiles. Based on these identified groups, an optimization
phase is then conducted to assign patients to the most
appropriate beds. The objective of this optimization is to
prioritize high-risk patients by assigning them to ICU and
respiratory beds, which are critical for their care. Only one
moderate-risk patient from three will be assigned to a normal
bed, ensuring that critical resources are reserved for those in
most urgent need.

The main challenge is that patients’ risk levels are unknown
and must be identified from clinical data. It is therefore
necessary to determine risk groupings without predefined
categories and allocate beds accordingly. In our research,
we aim to identify patients with high contagiousness, group
them into distinct risk categories, and determine the optimal
assignment of each patient to an appropriate bed based on
their health condition.

IV. COMBINING CLUSTERING METHODS AND
OPTIMIZATION FOR HPBAP

This paper proposes to solve the HPBAP by incorporating

additional constraints compared to the PBAP. Specifically,
patients are assigned to bed types that match their clinical
condition. Given the NP-hard nature [2] of the proposed
problem, we propose a two-stage solution methodology
illustrated in Figure 1.
In the first phase, unlike traditional classification approaches,
we adopt an unsupervised clustering strategy to group pa-
tients based on their clinical characteristic. This enables more
informed and targeted bed assignments, particularly useful in
emergency settings. In the second phase, these patient groups
are used as input to an exact optimization model based on a
branch-and-bound approach [20], which identifies the most
cost-effective and clinically appropriate assignments while
respecting capacity and prioritization constraints.
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Fig. 1. The proposed methodology flowchart

A. Clustering process

The clustering process provides an effective approach for
managing hospital bed availability during emergencies. It
helps categorize patients based on their medical profiles
and potential contagion, facilitating the allocation of suitable
beds. To tackle this challenge, we applied four unsuper-
vised clustering algorithms, aiming to uncover the natural
groupings within patient data. Specifically, we evaluate the
performance of K-Means, Gaussian Mixture Model (GMM),
DBSCAN, and HDBSCAN. These are combined with two
dimensionality reduction techniques, Principal Component
Analysis (PCA) and Uniform Manifold Approximation and
Projection (UMAP), which improve performance and reduce
the complexity of high-dimensional data. This approach
allows for the identification of meaningful patient clusters
without requiring predefined labels. The proposed method-
ology is validated using a COVID-19 dataset to ensure its
applicability in real-world emergency contexts.

1) Dataset description: The research utilized data ob-
tained from the University Hospital of Sousse, Tunisia,
covering September to December 2020. This data set con-
tains demographic and clinical details of patients who tested
positive for COVID-19. It comprises 20 instances, divided
into Small and Large groups according to different patient
numbers and bed availability (refer to Table I). Each set
provides details on the number of beds, the planned duration
of hospital stays, and the number of patients per category.
The different category of instances includes various patient
features, as well as: Age, Glucose (mmol/l), Systolic Blood
Pressure (mmHg), Diastolic Blood Pressure (mmHg), Tem-

perature (°C), Heart Rate (beats/minute), Respiratory Rate
(breaths/minute), and Oxygen Saturation (%).

TABLE I
KEY FEATURES OF THE DATASET CATEGORIES (WITH 10 INSTANCES IN
EACH CATEGORY)

Categories | Beds | Patients Number | Days
Small set 63 76-253 7
Large set 116 644-1500 7

2) Exploratory data visualization: Looking for more
understanding of the collected data, an exploratory data
analysis (EDA) for a small set of data, conducted in this
study, provides a first understanding of the dataset’s structure.
Figure 2 illustrates the distribution of key continuous vari-
ables through boxplots, highlighting their spread, medians,
and potential outliers.

The analysis shows that continuous variables such as Age,
Systolic Blood Pressure, and Temperature have different dis-
tribution patterns. For example, age follows an almost normal
distribution, while variables such as glucose and respiratory
rate are noticeably skewed. Additionally, bivariate analysis
reveals a strong positive correlation between Systolic and
Diastolic Blood Pressure, suggesting that these two measures
tend to increase together. However, most other variable pairs
demonstrate weak or no clear linear relationships.
Following the initial data exploration, a preprocessing step
is essential to transform and standardize the variables and
to apply dimensionality reduction techniques, preparing the
data for effective clustering.
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Fig. 2. The distribution of continuous features using Boxplots for a small
dataset

3) Dataset preprocessing: Before applying clustering
techniques, a data preprocessing phase was conducted to
prepare the dataset for analysis. Since clinical characteristics
had different scales, standardization (1) was first used to
ensure that each variable contributed equally to the clustering
process [16], where z represents the transformed feature
value, = is the value of the feature before transformation,
1 the average of = and o the standard deviation of z.

T —
g (1)

o
Following standardization, Principal Component Analysis
(PCA) was applied to decrease the data’s dimensionality



while preserving maximum variance. PCA generates new
uncorrelated variables, called principal components, that
capture the essential structure of the data while minimizing
noise [11].

Additionally, Uniform Manifold Approximation and Projec-
tion (UMAP) was explored as an alternative dimensional-
ity reduction technique. UMAP is particularly effective in
preserving both local and global data structures, making
it suitable for datasets like ours, where complex nonlinear
relationships between variables might exist [16].

4) Clustering modeling: In this work, several clustering
algorithms were adopted to model the structure of both small
and large datasets. The aim was to capture different patterns
depending on the nature of the data: linear, skewed, or
non-linear. We selected K-Means, Gaussian Mixture Models
(GMM), DBSCAN, and HDBSCAN, as they are among
the most recognized and widely applied clustering methods
in the literature (Xu and Wunsch, 2005). Each technique
offers specific advantages depending on the distribution and
structure of the data, which we detail below.

e K-Means is a clustering technique based on centroids
that divides the data into k distinct groups by mini-
mizing within-cluster variance, making it efficient for
linearly separable, spherical, and balanced datasets.
However, its performance declines with skewed or ir-
regularly shaped data [11].

o Gaussian Mixture Model (GMM) is a probabilistic
clustering method that represents data as a combination
of several Gaussian distributions, allowing flexible clus-
ter shapes and soft membership assignments, making it
suitable for overlapping or skewed data [8].

« DBSCAN (Density-Based Spatial Clustering of Ap-
plications with Noise) is a density-based clustering al-
gorithm that detects clusters of arbitrary shape by group-
ing closely packed points and marking low-density
points as noise, making it effective for non-linear and
noisy datasets. Its performance depends heavily on
the choice of hyperparameters (epsilon and minimum
points) [17].

« HDBSCAN (Hierarchical Density-Based Spatial
Clustering of Applications with Noise) extends DB-
SCAN by building a hierarchical clustering structure
based on density and extracting the most stable clusters,
improving performance on datasets with varying density
and complex non-linear structures [17].

The selection of these algorithms was motivated by the nature
of the datasets studied and the need to comprehensively
assess performance across different data complexities. K-
Means and GMM were primarily applied to well-structured
or moderately complex data, while DBSCAN and HDB-
SCAN demonstrated superior performance in scenarios in-
volving non-linear separations, skewness, or noise. Building
upon the insights gained from the clustering phase, we
proceed to the next stage of our methodology: optimizing
patient allocation decisions through a mathematical modeling
approach.

B. Optimization process

The mathematical model introduced in this study extends
the HPBAP formulation proposed by [14] by presenting a
soft version. Specifically, it relaxes some constraints, permit-
ting controlled violations that are penalized within the objec-
tive function. This relaxation increases the model’s flexibility
in high-demand scenarios such as pandemics, where strict
constraint satisfaction may lead to infeasibility or suboptimal
utilization of resources. By incorporating penalties into the
objective function, the model ensures that any violation
remains minimal and is balanced against overall system
efficiency. The HPBAP notations are:

o Sets/Parameters:
p € P : Set of patients
k € K : Set of clusters
p € Py, : Subset of patients P assigned to cluster k
d € D : Set of planning days
r € R : Set of type of beds R = {1 : Critical bed,?2 :
Respiratory bed,3: Normal bed}
D,, : Set of days of patient p hospitalization
Cp,r + Cost of assigning patient p to bed r
@, : Total number of beds
W, : Weight of transfer constraint
o Decision variables :
Zprq : 1 if patient p is assigned to a specific bed r on
day d, 0 otherwise
tp,ra: 1 if patient p is transferred from bed r on day
d, 0 otherwise

The mathematical formulation of the HPBAP problem:

o The objective function (2) minimizes two cost compo-
nents: the cost of assigning patients to inappropriate
beds and the cost of transferring patients between beds
during their stay.

Min Z Cp,r X Tp,r,d + Z WT?" X tr,d (2)

pEP, pEP,
reR,deD reR,deD

o Constraints (3) and (4) guarantee that each patient is
assigned to only one bed type that is compatible with
their identified contagious state (as determined through
clustering) at each decision period. Here, Ry C R
represents the set of bed types allowed for patients
belonging to the cluster k.

> @pra=1,Yp € Py,d € D, 3)
TER
Z Tp,ra = 1,Vp € Py,d € D, )
rERy

o Constraints (5) ensure that the total number of patients
assigned to a specific bed type does not exceed the
available capacity for that type at any given time.

Z Tprd < Qr,Vr € R,de D )
peEP

o Constraints (6) enforce continuity of bed assignment
during the patient’s entire stay, penalizing unnecessary



transfers between different beds.
Tp,r,d — Tp,r,d+1 < tp,r-,d,vp S P7 re R7 de Dp (6)
V. EXPERIMENTAL RESULTS

This section presents the detailed results of the exper-
iments conducted according to the previously established
methodology. We first evaluated the clustering algorithms
(K-means, GMM, DBSCAN, and HDBSCAN) performance
without applying any regularization. The silhouette scores
obtained were negligible for the small dataset across all
methods (0.15, 0.107, 0.17, 0.17), respectively, indicating
poor clustering quality. For the larger dataset, only HDB-
SCAN showed relatively better results (silhouette score
0.33); however, it produced a single cluster, which is not
acceptable in our context, where multiple clusters are neces-
sary to correctly assign patients to different beds (figure 3).
To overcome this, we introduced a PCA-based regularization
to reduce noise in the datasets, tuning the number of com-
ponents between 2 and 9, corresponding to the number of
features. Following this regularization with 2 components,
the best performance was observed with GMM generating
three clusters for the large dataset (silhouette score 0.35)
and GMM producing two clusters for the small dataset
(silhouette score 0.419). These differences can be explained
by the varying number of instances and the different patient
distributions in each dataset (see figure 4).

To further improve the clustering, we applied UMAP, given
that our data contained skewed and non-linear features.
We optimized UMAP parameters by varying the number
of neighbors (10, 15, 30, 50) and the minimum distance
(0.0, 0.1, 0.3, 0.5), identifying the best configuration at
10 neighbors and a minimum distance of 0.0. Under these
conditions, K-means performed best for the large dataset
by forming 33 clusters with a silhouette score equal to
0.353, while for the small dataset, K-means with two clusters
yielded the best results (silhouette score equal to 0.49) after
testing different values of k from 2 to 10. Finally, after
comparing the different approaches, we concluded that k-
means with three clusters after UMAP regularization is the
most effective technique for the large dataset with a 0,353
silhouette score (see figure 5), while K-means with two
clusters after UMAP regularization provides the best solution
for the small dataset with a 0,49 silhouette score. Throughout
all experiments, the silhouette score was consistently used as
the primary evaluation metric to guide the selection of both
clustering algorithms and their corresponding parameters. In
the clustering phase, patients were grouped into three clusters
using an unsupervised method based on their clinical and
demographic features. This data-driven approach revealed
that approximately 30-40% of patients were consistently
allocated to the first cluster across all datasets. This group
was interpreted as representing individuals in a highly con-
tagious or severe condition. These patients typically required
intensive medical care and were prioritized for assignment
to critical care beds.

The second cluster, comprising around 20-30% of patients,
typically represented individuals with moderate symptoms.

These patients were expected to need respiratory beds,
depending on availability. The third cluster contained the
remaining patients, generally classified as mild cases, best
suited for normal beds. In cases where respiratory beds were
unavailable, patients in the second cluster were redirected
to normal beds. If no normal beds were available, mild-
risk patients (cluster three) were not hospitalized, following
standard triage protocols in resource-constrained environ-
ments. The clustering step thus enabled a flexible, adaptive
categorization of patients based on actual characteristics
rather than a rigid, predefined assignment to bed types.
This flexibility is especially important in emergency contexts
where patient profiles vary widely and bed resources are
limited.

Moreover, the methodology was designed to remain robust
under different numbers of clusters. In scenarios where only
two clusters are produced, the assignment is straightforward:
the first cluster is mapped to critical beds, while the second
is mapped to respiratory beds. However, when the algorithm
identifies more than three clusters, a merging strategy is
applied: the two clusters with the highest severity profiles
are combined and collectively treated as priority cases for
assignment to critical beds. The subsequent clusters are
grouped accordingly for assignment to respiratory and then
normal beds, based on their relative risk levels.

To assess the practical implications of the clustering
phase, we integrated these clusters into the patient-to-bed
assignment model and solved it using IBM ILOG CPLEX
Optimization Studio (version 12.10). Table II summarizes
the results of the optimization step. The first column (“%
Critical patient (cluster)”) reports the proportion of patients
classified in the most severe cluster (Cluster 1). The second
column (“% Critical Admission”) shows the percentage of
these high-priority patients who were successfully assigned
to critical beds. The column “COST” reflects the total
assignment cost incurred, and the column “CPU-Time (s)”
indicates the computation time of the solver.

As shown in Table II, the proposed clustering-based method
outperformed the baseline model (same optimization al-
gorithm executed without the clustering phase) across all
scenarios. For the small dataset, clustering enabled 100%
admission of critical patients with a reduced cost (7220 vs.
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9500) and faster computation time (5.08s). In contrast, the
baseline admitted only 85% of critical patients. For the large
dataset, critical admission dropped to 20% due to capacity
limitations but still doubled the baseline performance (10%).
Additionally, the clustering-based approach lowered the cost
from 26,500 (baseline) to 21,840, despite increased complex-
ity and computation time (15.70s vs. 12.90s). These results
highlight the value of integrating a clustering phase to group
patients by severity, allowing more effective prioritization
and better use of limited resources, especially under high-
demand conditions.

TABLE 11
COMPARISON OF OPTIMIZATION RESULTS WITH AND WITHOUT
CLUSTERING

Clustering results | Average of the Optimization Results

% Critical Patient | %  Critical | COST | CPU-

(Cluster) Admission Time (s)
Short set 30%-40% 100% 7220 5.08
Large set 30%-40% 20% | 21840 15.70
Short  set - 85% 9500 4.20
(Baseline)
Large set - 10% | 26500 12.90
(Baseline)

VI. CONCLUSION

This paper proposes an innovative two-stage solution for
the Hospital Patient Bed Assignment Problem (HPBAP)
during emergencies, using unsupervised machine learning
and optimization techniques. In the first stage, patients are
clustered according to their contagious states into three
groups, using a K-means algorithm with the UMAP reg-
ularization method. In the second stage, an optimization

model is applied to minimize assignment costs by efficiently
assigning patients to beds and managing patient transfers.
The proposed approach demonstrates strong performance in
prioritizing critical patients, particularly for smaller datasets.
For larger datasets, future work will explore hybrid meth-
ods, combining metaheuristics, supervised and unsupervised
techniques, to improve scalability and assignment outcomes.
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