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Abstract—Reinforcement learning (RL) systems for au-
tonomous driving require carefully designed simulation environ-
ments to facilitate training and testing in dynamic and complex
scenarios. This paper presents the architecture of a simula-
tion environment tailored to train autonomous vehicle decision-
making systems, particularly for maneuver-based decisions such
as Adaptive Cruise Control (ACC) and Automatic Emergency
Braking (AEB). We emphasize the integration of key components,
including vehicle sensors, controllers, and environment models,
with a specific focus on the real-time communication required
to support RL training. Utilizing the Webots simulator and the
ExerShuttle project as a case study, this paper demonstrates
how RL-based agents can be integrated into a simulated driving
environment, addressing challenges in data flow accuracy, system
responsiveness, and component interoperability. The proposed
architecture provides a scalable and flexible framework for
developing robust RL models that adapt to diverse driving
conditions, supporting the advancement of safe and efficient
autonomous systems.

Index Terms—Simulation Environment, Autonomous Driving,
Reinforcement Learning, Webots Simulator, Communication Ar-
chitecture.

I. INTRODUCTION

The advancement of autonomous driving systems necessi-
tates the development of comprehensive simulation environ-
ments to assess, verify, and refine decision-making algorithms
before their deployment in real-world scenarios. The effective-
ness of these systems depends not only on decision-making
models, such as Reinforcement Learning (RL), but also on
the architectural design of the environment in which they are
trained and tested. Creating robust and realistic simulation
environments is essential for understanding how these systems
perform in dynamic and complex settings, where real-time
decision-making is critical for both safety and efficiency [1]
[2].

A key challenge in autonomous system development lies in
constructing an integrated environment that accurately repli-
cates real-world conditions. This includes simulating sensors,
communication protocols, vehicle dynamics, and interactions
with dynamic entities such as pedestrians and other vehi-
cles. Several simulation platforms, including Webots, CARLA,
Autoware, and Apollo, have been developed to support au-
tonomous driving research. While CARLA and Apollo offer
high-fidelity urban simulations with detailed traffic and en-

vironmental dynamics, Webots provides flexibility and ease
of use, making it well-suited for smaller-scale, multi-agent
systems and early-stage prototyping [3].

Although simulation platforms play a crucial role, prior
research has mainly focused on decision-making algorithms
and sensor fusion techniques, paying comparatively less at-
tention to the supporting system architecture. This includes
the structure of the simulation environment and the com-
munication mechanisms between system components. This
paper seeks to address this gap by examining the architectural
requirements for developing effective simulation environments
for autonomous vehicles, emphasizing component communi-
cation, sensor integration, and system scalability.

II. RELATED WORK

Research on autonomous driving has focused on decision-
making algorithms and their supporting architectures. Early
studies used rule-based approaches like car-following models
[4], which were effective in simple scenarios but lacked
adaptability.

With AI advancements, Deep Reinforcement Learning
(DRL) has emerged for handling complex driving environ-
ments. Sallab [5] highlights DRL’s potential, emphasizing the
need for well-designed simulation environments. Platforms
like CARLA, Apollo, and Autoware support RL-based testing
in urban environments. CARLA [6] provides high-fidelity
urban simulations, while Autoware [7] and Apollo [8] offer
modular frameworks for autonomous vehicle development.

For large-scale traffic simulations, SUMO [9] efficiently
models vehicle interactions. Webots [10], in contrast, is a
flexible, user-friendly platform for multi-agent simulations and
early-stage prototyping. Unlike CARLA, which specializes in
high-fidelity urban driving, Webots supports diverse robotic
systems and RL frameworks like OpenAI Gym.

Beyond simulation platforms, research emphasizes system
architecture and component communication. OpenAI Gym
[11] highlights the importance of seamless agent-environment
interaction, crucial for Webots’s multi-agent and sensor man-
agement. Comparative studies [12] indicate that while Webots
excels in flexibility, CARLA and Apollo are better suited for
large-scale urban driving simulations.



Webots, CARLA, Autoware, and Apollo are key simulation
platforms, each with distinct advantages. Webots excels in
rapid prototyping with an integrated development environ-
ment, supporting diverse robotic platforms and sensors. Its
lightweight, flexible design and lower computational demands
make it ideal for iterative development and academic research.

In contrast, CARLA, Autoware, and Apollo focus on high-
fidelity simulations, replicating real-world conditions to test
edge cases and system robustness. While offering unparalleled
realism, their complexity and high computational demands can
be challenging for early-stage prototyping. Webots, with its
lightweight architecture, ease of use, and broad applicability,
remains a highly efficient and accessible simulation environ-
ment for researchers and developers.

While decision-making algorithms have advanced, the sim-
ulation architectures supporting them remain a critical research
area. Simulation tools are essential for testing and validating
autonomous systems, providing a safe, cost-effective environ-
ment for refining algorithms before deployment.

III. BACKGROUND

In our preceding study [13], we validated the decision-
making system using the Policy Gradient (PG) and Proximal
Policy Optimization (PPO) algorithms, thereby demonstrating
their efficacy in autonomous decision-making. This paper
builds upon our previous work by incorporating the Deep
Deterministic Policy Gradient (DDPG) algorithm to investigate
the viability of RL training within the Webots environment.
This provides a more comprehensive assessment of the appli-
cability of RL in autonomous systems.

Deep Deterministic Policy Gradient is an actor-critic algo-
rithm that has been developed for use in environments with
continuous action spaces. It has the ability to bridge the gap
between policy-based and value-based RL. DDPG employs
deep neural networks to represent both the policy (actor) and
the value (critic) functions, thereby enhancing the algorithm’s
capacity to process high-dimensional sensory inputs, which
are prevalent in applications such as robotics and autonomous
vehicles. The following formulas have been derived from [14].

In the context of the DDPG framework, the critic network
updates its parameters by minimising the mean squared error
between the predicted Q-values and the target Q-values, which
are computed using the Bellman equation [14]. The loss
function is expressed as follows:

L =
1
N ∑

i

(
yi−Q(si,ai|θ Q)

)2
, (1)

where yi = ri + γQ′(si+1,µ
′(si+1|θ µ ′)|θ Q′), encapsulating the

Bellman equation for continuous actions with target networks
Q′ and µ ′ to mitigate oscillations in learning.

The policy network, or the actor, is updated by employing
the policy gradient method. The gradient of the policy’s
performance is estimated by the product of the gradients of
the critic’s Q-value with respect to the action, evaluated at the
current policy’s action, and the gradient of the actor network

with respect to its parameters. This relationship is quantified
as

∇θ µ J ≈ 1
N ∑

i
∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|si , (2)

effectively linking the actor’s policy updates directly to the
performance improvements as assessed by the critic.

Furthermore, DDPG stabilizes the learning process by softly
updating the target networks, which are critical to mitigate the
effects of rapidly changing policy estimates that could lead to
destructive interference. The parameters of the target networks
for both the actor and the critic are updated using the formula

θ
Q′ ← τθ

Q +(1− τ)θ Q′ , θ
µ ′ ← τθ

µ +(1− τ)θ µ ′ , (3)

using a soft update method to slowly integrate the learned
networks’ weights into the target networks, enhancing the
stability of the training process.

The integration of a replay buffer to randomly sample pre-
vious experiences and the employment of target networks for
soft updates are innovations that allow DDPG to outperform
other algorithms in complex environments. This approach
allows the agent to learn stable policies from raw sensory
inputs without requiring manual feature engineering.

IV. METHODOLOGY

The Webots simulator comprises a number of key elements,
including the capacity for dynamic environmental interaction,
sensors for data acquisition, and modules for localisation, map
integration, perception, and planning, as shown in Figure 1. At
the core of the system is an RL agent that processes perceptual
data in order to make decisions, which are then executed
by the control and actuation system to manage the vehicle’s
steering and velocity, thereby ensuring adaptive and efficient
navigation.
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Fig. 1. Architecture for reinforcement learning in Webots simulator
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Fig. 2. Integrating Deep Deterministic Policy Gradient with OpenAI Gym and Webots for Autonomous Driving Simulation

A. Environment Modeling

Webots provides powerful tools for creating realistic sim-
ulation environments. In autonomous driving projects like
ExerShuttle, which operates in urban settings, Webots enables
the accurate replication of test-site layouts, including roads,
intersections, pedestrian areas, and obstacles. Users can model
different terrains, buildings, and traffic elements to ensure a
close match to real-world driving conditions. Additionally, the
simulation can be adjusted for various weather and lighting
conditions, allowing performance evaluation in scenarios such
as low-light or rainy environments.

B. Sensor and Actuator Integration

Webots supports a wide range of sensors and actuators
essential for autonomous driving, including cameras, LiDARs,
Radars, GPS, and IMUs. These sensors collect environmental
data, enabling real-time decision-making by the RL agent.
They can be attached to virtual vehicle models to replicate
real-world sensor placements.

In the ExerShuttle project, LiDAR is used for object detec-
tion and distance measurement, generating point cloud data
to identify surrounding objects. A target selection mechanism
identifies and prioritizes obstacles in the shuttle’s path, such
as other vehicles, based on proximity and motion prediction.
Cameras assist in recognizing road markings and signs, im-
proving lane-keeping and traffic compliance. The data from
these sensors feed into the RL model, allowing the vehicle
to navigate, avoid obstacles, and adjust speed in a realistic
manner.

C. Communication and Control Systems

A key strength of Webots is its ability to simulate com-
plex control systems and facilitate communication between
different vehicle components. The platform supports custom
controllers written in multiple languages, including C, C++,
Python, and MATLAB, allowing for flexible and project-
specific control logic implementation. This modular approach

is particularly beneficial for projects like ExerShuttle, where
separate controllers can manage different functions, such as
Adaptive Cruise Control (ACC) [15, p. 24] and Automatic
Emergency Braking (AEB) [15, p. 666].

In a RL setup, Webots enables control systems to receive
sensor data, process it, and send commands to the vehicle’s
actuators. For instance, if LiDAR detects an obstacle, the
system can trigger the emergency braking controller, bringing
the vehicle to a stop. This setup closely mirrors real-world
autonomous vehicle control mechanisms.

D. Constructing an OpenAI Gym Environment Using Webots

The training architecture integrating the RL algorithm
within an OpenAI Gym and Webots simulation environment is
shown in Figure 2, specifically tailored for autonomous driving
applications.

1) Agent and Environment Interface: At the core of this
architecture is the OpenAI Gym Agent, which employs an
RL algorithm to optimize driving decisions based on state
feedback and reward mechanisms. The agent interacts with the
environment through the OpenAI Gym API, which provides
two key functions:
• env.step(A): Advances the simulation by one timestep

using action A, determined by the policy. This function
returns the new state S, reward R, and a done flag D,
which indicates whether the episode has ended.

• env.reset(): Reinitializes the environment, starting a new
learning episode from a default state.

2) Simulator Dynamics: Webots provides a realistic 3D
simulation environment for various driving scenarios, integrat-
ing several essential components:
• Supervisor: Manages the simulation by controlling pa-

rameters, monitoring vehicle behavior, and overseeing
interactions with environmental features.

• Drivers: Execute the driving commands issued by the
agent, influencing the vehicle’s steering and velocity.



• Obstacles: Represent static and dynamic objects, adding
realistic driving challenges.

• Sensors: Capture environmental data like distance to
obstacles, traffic signals, or road markings, feeding this
information back to the supervisor to inform the state
representation.

3) Feedback Loop: The feedback loop plays a crucial
role in RL-based learning. The agent’s actions influence the
vehicle’s behavior through the driver module, while sensors
capture the resulting interactions. The supervisor processes this
data, generating a new state, reward, and completion status,
which are relayed to the agent via the OpenAI Gym API.
This iterative process enables continuous policy refinement.

4) Learning and Adaptation: Through repeated interaction
with the environment, the agent continuously refines its policy
based on accumulated experiences. This architectural design
allows for extensive experimentation with diverse driving
strategies, enhancing and validating autonomous driving al-
gorithms in a controlled yet realistic setting.

E. Real-Time and Multi-Agent Simulation

Webots supports real-time and multi-agent simulations, al-
lowing multiple autonomous entities—such as vehicles, pedes-
trians, and cyclists—to interact within a shared environment.
In the ExerShuttle project, this enables realistic testing of
vehicle responses in dynamic, multi-agent scenarios.

Real-time simulation is particularly valuable for RL, as it
presents agents with evolving conditions and unpredictable
interactions. This capability closely mirrors real-world au-
tonomous driving environments, where vehicles must react to
multiple stimuli simultaneously, ensuring robust and adaptable
decision-making.

V. EVALUATION

The following evaluation aims to assess the feasibility and
effectiveness of utilising the Webots simulation platform for
the training of RL models in autonomous driving tasks. The
principal objective of this evaluation is to ascertain the suitabil-
ity of Webots as a training environment. This encompasses an
assessment of its capacity to simulate intricate driving scenar-
ios, integrate with RL frameworks, and accommodate multi-
sensor configurations that are pivotal for decision-making
models.

A. Training the Algorithm

The training of an autonomous driving system using RL
focuses on developing behaviors such as ACC and AEB. The
system dynamically interacts with its environment, processing
sensory inputs, making decisions based on learned policies,
and optimizing actions through a reward mechanism.

The architecture consists of:
• Perception Layer: Aggregates sensor data (e.g., vehicle

speed, traffic conditions) and extracts key features for
decision-making.

• Decision-Making Layer: Utilizes an RL framework to
map states to actions, optimizing long-term rewards.

ACC learns optimal following distances and acceleration
patterns, while AEB prioritizes rapid deceleration in high-
risk scenarios, overriding ACC when necessary.

• Feedback Loop: Continuously refines policies based on
interactions, ensuring adaptability to varied driving con-
ditions.

This iterative training process enhances system robustness,
enabling dynamic prioritization of actions. As the model
matures, it generalizes beyond initial behaviors, integrating
new driving strategies to improve safety and adaptability.

The following Figures 3 and 4 illustrate specific training
cases within the Webots environment:
• ACC Training Scenario: Figure 3 demonstrates the train-

ing process for ACC, where the Autonomous Vehicle
(AV), using the Intelligent Driver Model (IDM) [15, p.
148] for speed control, learns to adjust acceleration and
maintain a safe distance from the Leading Vehicle (LV)
in a dynamic traffic environment.

• AEB Training Scenario: Figure 4 displays the AEB
training case. Here, the AV is trained to recognize and
respond to potential collision scenarios by applying max-
imum negative acceleration in emergency situations, thus,
enhancing vehicle safety.

The aforementioned scenarios serve to illustrate Webots’s
aptitude for facilitating a multitude of RL tasks, which are
of essential importance to the advancement of autonomous
driving technologies.

Fig. 3. AV follows the LV Fig. 4. AV brakes emergency

B. Evaluation Metrics

To evaluate Webots as an RL training environment, we
focused on the following metrics:
• Simulation Fidelity: The realism of the driving environ-

ment, including road conditions, obstacles, and dynamic
elements like pedestrians and other vehicles.

• Sensor Integration: The accuracy and responsiveness of
sensor data and its usability within RL training work-
flows.

• Training Stability: The consistency and stability of RL
model convergence within Webots, including the number
of episodes required for convergence.

• Environment Responsiveness: The real-time feedback
loop efficiency between the RL agent and the simulated
environment, especially under high interaction scenarios.

C. Simulation Fidelity and Realism

Webots enables the development of highly customizable
driving environments. The ExerShuttle test area at Am Exer
is simulated using OpenStreetMap data, continuously refined



to reflect real-world updates, such as lane modifications, new
constructions, and parking areas. This allows for an assessment
of Webots’ capability in replicating real-world driving com-
plexities. In early RL training phases, only essential elements
(e.g., lanes, autonomous vehicles, key traffic participants) are
included.

The ExerShuttle vehicle is also simulated using Webots’s
Ackermann vehicle model, with key parameters (e.g., weight,
center of gravity, steering angle, speed, acceleration) cali-
brated to match the real vehicle. The integration of its CAD
model further enhances fidelity, ensuring a realistic simulation
aligned with actual autonomous vehicle dynamics.

RoboSense
Bpearl

Stereo
Camera

RoboSense
M1P

Fig. 5. Autonomous Vehicle and Sensor Integration

D. Sensor Integration

In the ExerShuttle project, a suite of sensors has been
optimized to ensure comprehensive environmental perception
as shown in Figure 5. The RoboSense M1P solid-state LiDAR,
with a range of 150m, monitors the front, enabling early detec-
tion of obstacles and road features. Three RoboSense Bpearl
blind-spot LiDARs, each covering 30m, enhance side and rear
awareness, minimizing blind spots. Additionally, the Allied
Vision ScanScene Pro stereo camera captures details within
a 10m radius, improving navigation in dense environments.
Together, these sensors provide a 360◦ perception for safer
and more efficient autonomous driving.

To ensure accurate LiDAR simulation, custom PROTO
files were created to model the M1P and Bpearl sensors
with precise specifications, including Field of View (FOV),
number of channels, and range. Since direct stereo camera
support is unavailable, a stereo vision setup is emulated using
two RGB cameras with a RangeFinder to approximate depth
information, generating realistic 3D scene data.

Integrated GPS and IMU modules in the simulation provide
precise vehicle pose data, eliminating real-world localization
errors. As a result, the ExerShuttle’s Novatel GNSS/INS
module was not replicated, as Webots’s built-in sensors ensure
accurate positioning, maintaining realism while optimizing
simulation efficiency.

E. Training Stability and Convergence Analysis

The stability of RL models is crucial for their successful de-
ployment, particularly in simulation environments like Webots.
Stability refers to the model’s ability to consistently converge
across training sessions, assessed through the analysis of

reward trends over time. Reliable convergence is essential
for ensuring that an RL model can achieve an optimal or
near-optimal policy within a predefined number of training
episodes.

In Webots, the required number of episodes for convergence
directly influences training efficiency and the practical fea-
sibility of real-world deployment. A stable training process
enhances model reliability, reducing variability in learning
outcomes and improving the predictability of autonomous
decision-making. The DDPG agent comprises actor and critic
networks with two hidden layers of 256 units (initialized
uniformly in ±3×10−3), employs learning rates of 10−4 for
the actor and 10−3 for the critic, uses a replay buffer of
6×104 samples and batch size 64, injects Ornstein–Uhlenbeck
noise (θ = 0.15,µ = 0,σ = 0.2) with ε-greedy exploration
(linearly decaying ε from 200), performs soft target updates
with τ = 10−3, and discounts rewards by γ = 0.99.
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Fig. 6. Training results of PG, PPO and DDPG models

Figure 6 presents the reward trends of PG, PPO, and DDPG
over the initial 300 episodes from 1000 episodes, capturing the
critical convergence phase. Analyzing early-stage performance
provides insights into stability and training efficiency within
the Webots RL environment:
• Policy Gradient: Initially exhibits moderate reward vari-

ability before stabilizing. While capable of convergence,
PG requires more episodes for stability, suggesting the
need for hyperparameter tuning to improve training effi-
ciency.

• Proximal Policy Optimization: Shows steady reward im-
provement and faster convergence than PG, demonstrat-
ing stability and adaptability within Webots. Its consistent
learning trajectory highlights Webots’s effectiveness in
facilitating stable RL training.

• Deep Deterministic Policy Gradient: Experiences high
initial fluctuations but converges rapidly. This reflects We-
bots’s suitability for continuous control tasks, as DDPG
efficiently processes multi-sensor data and interaction
feedback, achieving stable learning in fewer episodes.



These reward trends collectively emphasize Webots’s capa-
bilities as an RL training platform. Its support for stable learn-
ing across varied RL algorithms highlights its adaptability and
robustness for complex, autonomous driving tasks, affirming
its practical relevance in real-world model deployment.

F. Environment Responsiveness and Feedback Loop Efficiency

Achieving training stability and convergence is crucial for
developing robust RL models applicable to real-world scenar-
ios. A key factor influencing training efficiency is the trig-
gering frequency, which determines how often the simulation
updates. While Webots theoretically supports 50Hz, practical
CPU limitations can significantly reduce this rate, leading to
delayed feedback and slower convergence. This highlights the
sensitivity of RL performance to simulation fidelity.

Simulation complexity also impacts computational de-
mands, requiring a balance between environmental detail and
training feasibility. Higher model complexity, characterized
by increased parameters and state space dimensionality, pro-
longs convergence due to greater computational requirements.
Advanced hardware, such as high-performance GPUs, can
mitigate these challenges by improving processing efficiency
and reducing training time.

In practical tests, a 50 Hz update rate was set, aiming for
20ms per step. To maintain realistic vehicle dynamics, control
steps were adjusted to 100ms. However, processing delays of
120ms per update reduced the effective frequency to 8.33Hz,
significantly below the target, affecting training efficiency and
model responsiveness.

G. Feasibility Assessment and Limitations

Our evaluation demonstrates that Webots is well-suited for
training RL-based autonomous driving models, offering a flex-
ible and customizable simulation environment for early-stage
development. However, limitations were observed, including
constraints in large-scale urban simulations and potential
latency in high-interaction scenarios. Future improvements
should focus on enhancing simulation fidelity and responsive-
ness to better support complex RL tasks.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a proof of concept demonstrating the
feasibility and effectiveness of RL models within the We-
bots simulation platform for autonomous driving tasks, with
a particular focus on ACC and AEB functionalities. The
results confirm that Webots provides a scalable and robust
environment for RL model training, enabling the system to
respond adaptively and make critical decisions in diverse
driving scenarios. Nevertheless, the current configuration is
constrained by the simplicity of traffic dynamics and the
limited complexity of environmental interactions.

In future work, the intention is to integrate SUMO in
order to model more complex traffic environments, thereby
enabling the simulation of a greater variety of decision-making
scenarios, including advanced manoeuvres such as overtaking

and intersection. This will further enhance the training sce-
narios and improve the system’s capacity to handle real-world
complexities. Furthermore, future research will investigate
methodologies for transferring the RL models trained in the
simulation environment to the physical ExerShuttle platform,
addressing the practical challenges of real-world application
and testing. In the next six months, the initial focus will be
on deploying and testing simplified ACC and AEB decision
models on the physical vehicle system. This phase will involve
integrating the models, conducting real-world tests, and opti-
mizing their performance to ensure reliability and adaptability
under real driving conditions.
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