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Abstract—Image forgery detection is crucial in digital foren-
sics, cybersecurity, and legal investigations. Despite advance-
ment, detecting subtle manipulations like copy-move forgeries
remains challenging due to increasingly realistic images. This
paper proposes a hybrid approach that combines a pretrained
VGG16 model for feature extraction, cosine similarity for block-
level comparison, and support vector machines for classification,
addressing key limitations of existing methods. Through a com-
parative evaluation of CNN architectures, VGG16 is identified as
the most effective for extracting discriminative features in this
context. Cosine similarity quantifies the similarity between image
block features to enable the model to focus more effectively on
the tampered regions that closely resemble the original ones, and
SVMs are leveraged to classify authentic versus forged regions.
This novel integration of deep learning for feature extraction and
classical classification techniques is highly accurate with minimal
false positives, without relying on handcrafted features. Exper-
iments on the MICC-F2000 dataset demonstrate the method’s
strong performance, achieving 99.59% precision, 98.00% recall,
and a 0.99 F1-score.

Index Terms—Copy-move forgery detection, Hybrid-based
techniques, VGG16, Cosine similarity, Support Vector Machines.

I. INTRODUCTION

Copy-move forgery (CMF) is among the most prevalent
techniques used to manipulate images. It is often employed to
alter visual evidence or mislead viewers by concealing certain
elements or duplicating key objects within an image In an
era where digital image manipulation has become increasingly
accessible and sophisticated [1], [2], Copy-Move Forgery
Detection (CMFD) has emerged as a vital area of research with
diverse applications in digital forensics, content verification,
and authenticity preservation [3], [4]. CMFD is particularly
crucial in forensic investigations, where altered images may
be used as evidence in criminal proceedings. In journalism,
it ensures the integrity of visual content, safeguarding readers
from manipulated and deceptive imagery.

Social media platforms use CMFD to detect and remove
forged images, helping combat misinformation and maintain

trust. In e-commerce, CMFD authenticates product images,
ensuring transparency. In digital art, it verifies artwork authen-
ticity, reducing counterfeit proliferation. Across law enforce-
ment, journalism, social media, commerce. CMFD is vital for
preserving the credibility and reliability of digital images in
an age of widespread manipulation [5] .

Despite advancements, CMFD remains a challenging task,
particularly when confronted with subtle and expertly executed
forgeries. Traditional handcrafted algorithms, which rely on
manually defined features, often fall short due to their rigid
assumptions and vulnerability to transformations such as rota-
tion, scaling, and blending [6], [7]. These manipulations make
forged regions nearly indistinguishable from authentic ones,
posing significant hurdles for detection methods [5]. On the
other hand, fully end-to-end CNN models may lack the explicit
discriminative mechanisms needed to distinguish between
highly similar tampered and original regions. To address this,
we incorporate cosine similarity to effectively measure feature-
level resemblance, and leverage Support Vector Machines
(SVMs) for its robust decision boundaries, offering better
generalization in challenging forgery detection scenarios.

The main contributions of this study are as follows:

• A comprehensive evaluation and comparative analysis
of multiple pretrained CNN models, including VGG16,
ResNet18, DenseNet121, and AlexNet to determine the
most effective feature extractor for sophisticated CMFD.

• The design and integration of a novel hybrid detection
framework that combines VGG16 for feature extraction,
cosine similarity for measuring inter-block similarity
while concentrating on tampered regions resembling the
original ones, and SVMs for classification.

The rest of the paper is structured as follows: Section II
reviews relevant literature. Section III outlines the proposed
methodology. Section IV presents the experimental results and
analysis. Section V concludes the paper with insights and
future research directions.



II. RELATED WORK

CMF in digital images is a complex and demanding task
that requires advanced tools and techniques. Over the years,
researchers have developed a wide range of methods to tackle
this challenge [5]. These approaches can be broadly catego-
rized into traditional CMFD methods (such as block-based
and keypoint-based techniques), hybrid strategies, and those
leveraging deep learning frameworks.

A. Conventional CMFD techniques

Methods for detecting forgery are generally classified into
block-based and keypoint-based types, typically involving
feature extraction, matching, and forgery localization.

• Block-based methods: These divide the image into over-
lapping or non-overlapping blocks. Features are extracted
using techniques like discrete cosine transform, prin-
cipal component analysis, or local binary pattern and
matched using correlation or Euclidean distance. Forgery
localization often uses geometric transformations with
RANSAC to filter mismatches [8]. However, they are
computationally intensive and struggle with geometric
transformations.

• Keypoint-based methods: They detect keypoints
(e.g.corners and edges) using algorithms like Scale-
Invariant Feature Transform (SIFT) or Speeded Up
Robust Features (SURF) [9], [10], and match them
using clustering or nearest-neighbor techniques. Though
efficient and robust to transformations, they face
challenges in uniform regions or misclassifying similar
images as forgery.

Despite their effectiveness, conventional methods have limita-
tions, including manual parameter adjustment, dataset depen-
dence, and reduced generalizability.

B. Hybrid CMFD techniques

Hybrid methods [12], [13] are particularly effective for
identifying diverse CMF, handling various transformations,
and managing complex backgrounds. For example, in [12],
the authors proposed a forensic framework that combined
adaptive and hybrid strategies, incorporating Haar discrete
wavelet transforms, SURFs, histogram of oriented gradients,
and a probabilistic filter for classification.

C. Deep-learning based CMFD methods

Recent deep learning methods have significantly advanced
forgery detection in computer vision by automatically ex-
tracting hierarchical features, eliminating the need for manual
feature engineering. However, their reliance on large datasets
remains a challenge. Several solutions have addressed this, as
outlined below:

• CMFD using CNNs: Researchers have tailored deep
learning models [14] like AlexNet,VGG16, VGG19,
ResNet, GoogleNet, and DenseNet for forgery detection
by fine-tuning their layers and training them on domain-
specific datasets [14], [15]. While these architectures have
been adapted to effectively detect copy-move, splicing,

and inpainting forgery, their primary strength lies in
feature extraction and classification rather than precise
pixel-level localization.

• CMFD using object detection networks: Frameworks like
R-CNN, Faster R-CNN and Mask R-CNN have been
modified to identify forgery regions by adjusting their
layers and training them with specialized datasets [16],
[17].

• CMFD using autoencoders: An autoencoder compresses
and reconstructs an image to detect inconsistencies, using
symmetric or asymmetric layers to enhance performance.
Rather than reconstructing the full image, it can output
a binary mask to localize forged and authentic pixels,
enabling effective detection of various forgery types [18],
[19].

• CMFD using Generative Adversarial Networks (GANs):
GANs use a generator to create samples resembling train-
ing data and a discriminator to assess authenticity. Some
GAN-based methods employ one-class classification or
combine sparse autoencoders with SVMs for forgery
detection [7], [20].

• CMFD using Recurrent Neural Networks (RNNs): RNNs,
particularly LSTMs, capture spatial dependencies and are
used in combination with CNNs and autoencoders for
pixel-level forgery detection [4], [21].

A summary of these models and their performance is
provided in Table I. Despite advancements, challenges in CMF
detection persist [3]. One major issue is generalizability, as
models often struggle with unfamiliar data or unclear copied
regions. Another challenge is background blending, where
forgeries seamlessly integrate into complex backgrounds, com-
plicating detection. These challenges underscore the need for
improved methods to handle such complexities in real-world
data.

III. METHODOLOGY

This methodology targets CMFD by classifying image
blocks as authentic or forged through a three-stage process:
(1) deep feature extraction using a pre-trained CNN, (2)
block similarity assessment via cosine similarity, and (3) final
classification using an SVM. To identify the most effective
feature extractor, we conduct a comparative evaluation of
four widely used pre-trained CNN architectures (VGG16,
ResNet18, DenseNet121, and AlexNet) on a benchmark
dataset. VGG16 is selected based on superior performance
across precision, recall, and F1-score metrics. While the indi-
vidual components are standard, their integration in a block-
wise forgery detection pipeline and extensive comparative
validation contribute to the robustness and novelty of this
approach.

VGG16 is known for its simple, uniform architecture with
16 layers, utilizing 3x3 convolutional filters and max-pooling,
although it is computationally heavy due to its large number of
parameters. ResNet18, part of the ResNet family, introduces
residual connections, allowing the model to train deeper net-
works by addressing the vanishing gradient problem, making it



TABLE I
SUMMARY OF STUDIES ON CMFD EMPLOYING DEEP LEARNING-BASED METHODS

DL architectures Ref Techniques Datasets Performances

CNN [15]
Dual-branch CNN MICC-F2000 Robust to scaling

[14]
AlexNet and logistic

regression
MICC-F600, MICC-F2000 Improving accuracy on smaller datasets

RNN [21]
CNN with LSTM NIST16, COVERAGE Able to detect all types of forgery

[4] CNN with ConvLSTM MICC-F220, MICC-F600,
MICCF2000

Hybrid layers enhancing performance,
dataset combination improves generality

GAN [20]
GAN with SVM MICC-F600, CoMoFod Necessitating a large amount of data

[7] Dual-order attentive GAN CASIA, CoMoFod Robust against geometric
transformations

Autoencoders [18]
LSTM and rotating

residual units
COVERAGE, NIST16, CASIA Detection of all types of forgery

[19]
U-net (encoder(ResNet)-

decoder)
COVERAGE, NIST16, CASIA,

CoMoFod
Detection of all types of forgery images

with high computational complexity

Object detection [17]
Mobilenet with mask

R-CNN
MICC-F220, MICC-F600, and

MICCF2000
Robust to detect forgery

[22]
DenseNet-41 with mask

R-CNN
CoMoFod, MICC-F2000, CASIA V2 Robust against geometric

transformations

faster and more efficient than other models. DenseNet121, with
121 layers, uses densely connected blocks where each layer
receives input from all previous layers, improving feature reuse
and reducing the parameter count. AlexNet, one of the first
deep learning models to perform well on ImageNet, consists of
8 layers and introduces key innovations like ReLU activations
and dropout, although its architecture is relatively shallow by
modern standards. In this approach, cosine similarity is used
to measure the similarity between image blocks, which is a
key step in detecting image forgery. However, we incorporate
an SVM to transform this similarity score into a robust binary
classification, distinguishing between ”authentic” and ”forged”
blocks, to handle complexities and variations in the data. In
practice, we treat cosine similarity as a feature for the SVM,
rather than a final decision-making criterion. This allows the
SVM to learn from the similarity values and make more
accurate classifications. This approach not only improved the
flexibility of the system but also its performance, especially
when dealing with diverse and complex datasets.

The methodology of this approach is structured as follows:

A. Image preprocessing

• The image is resized to 224 × 224 pixels, which is the
standard input size for VGG16.

• The pixel values are normelized, typically by subtracting
the mean RGB values used during the pre-training of
VGG16, or by dividing by 255 to scale them to the range
[0, 1].

• Each image is divided into overlapping/non-overlapping
blocks of size 32× 32. With a stride of x pixels (e.g. 32
for non-overlapping or 16 for 50% overlap), this results
in approximately 49 blocks per image. Each block is then
passed through the CNN for feature extraction.

B. Feature extraction using VGG16 (FC7 Layer)

• The image is passed through the VGG16 network, which
is pre-trained on ImageNet. The network consists of
several convolutional layers followed by fully connected
layers.

• For feature extraction, the output from the FC7 layer
(second-to-last fully connected layer before softmax out-
put) is used. This layer produces a 4096-dimensional
feature vector for each image or block (equation 1).

The extracted feature vector for an image or block is:

Fimage = [f1, f2, . . . , f4096]
T (1)

where Fimage ∈ R4096 is the feature vector representing the
visual information of the image or the extracted block. To
capture local patterns, each image is partitioned into fixed-
size blocks (32 × 32). A total of 49 blocks are extracted per
image, and each is processed through the CNN [23] to obtain
its feature representation.

C. Using cosine similarity to compare blocks

When working with image blocks (e.g. using a sliding
window), each block extracted from the image is converted
into a feature vector from the FC7 layer of VGG16.

1) Cosine similarity calculation: Once you have the feature
vectors of blocks Bi and Bj , the cosine similarity [24] is
computed between the feature vectors FBi

and FBj
(equation

2):

Simcos(Bi, Bj) =
FBi · FBj

∥FBi
∥∥FBj

∥
(2)

where: FBi
and FBj

are the feature vectors of blocks Bi and
Bj , · denotes the dot product and ∥ · ∥ denotes the L2-norm
(Euclidean norm) of the vector.



Image preprocessing

Resizing to 224x224

Normalizing Pixel values

Feature Extraction using VGG16

Compute cosine similarity between blocks

Cosine similarity vector as SVM input
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Classifying blocks using SVM

Classified as authentic Classified as forged

Fig. 1. Block diagram of image forgery detection process using VGG16,
cosine similarity, and SVM

2) Similarity thresholding: If the cosine similarity [24]
between two blocks exceeds a predefined threshold θ (e.g.,
θ = 0.9), these blocks are considered forged (copied and
moved from another region of the image). Otherwise, they
are considered authentic (equation 3).

If Simcos(Bi, Bj) ≥ θ then Bi, Bj are forged. (3)

D. SVM classifier training

After calculating the cosine similarity between blocks, these
similarity values are used as input to train the SVM [25]. Here
is a detailed breakdown of the process:

1) Labeling Data: For each pair of blocks Bi and Bj , a
label is assigned:

• 1 (forged) if Simcos(Bi, Bj) ≥ θ,
• 0 (authentic) if Simcos(Bi, Bj) < θ.

2) SVM training: The labeled dataset (cosine similarities
and corresponding labels) to train an SVM classifier. The
input to the SVM will be the cosine similarity between feature
vectors of blocks, and the output will be a binary classification:
authentic (0) or forged (1).

The SVM learning algorithm seeks to maximize the margin
γ between the two classes by solving the following optimiza-
tion problem (equation 4):

min
w,b

1

2
∥w∥2 subject to yi (w · xi + b) ≥ 1, ∀i (4)

where: w is the weight vector of the hyperplane, b is the bias
term, xi is the cosine similarity value for block Bi and yi is
the label associated with Bi (0 for authentic and 1 for forged).

A Radial basis function kernel is utilized due to its ability to
handle non-linear relationships in the feature space. The SVM
is trained with the regularization parameter C = 1.0 and the
kernel coefficient γ = 0.01, selected via cross-validation.

E. Classifying blocks using the SVM

Once the SVM is trained, it can be used to classify new
blocks extracted from an image. Each block is compared
to other blocks to calculate its cosine similarity, and these
similarity values are fed into the SVM classifier.

• If the SVM predicts 1 for a block pair, then those blocks
are classified as forged.

• If the SVM predicts 0, the blocks are classified as
authentic.

IV. EXPREIMENTS

This section outlines the environmental setup for training
and testing employed in the proposed method and evaluates its
performance compared to current state-of-the-art techniques.

A. Dataset

To train and test models, deep learning frameworks require
large datasets. This study uses the MICC-F220, the MICC-
F2000 [26], CASIA 1.0 and the CASIA 2.0 [27] datasets.
Table II provides all the information about these databases.

TABLE II
IMAGE FORGERY DATABASE SPECIFICATIONS

Authentic images Forged image Total number
of images

MICCC-F220 110 110 220
MICCC-F2000 1,300 700 2,000
CASIA 1.0 800 925 1,721
CASIA 2.0 7,491 5,123 12,614

Each dataset is divided into 80% for training and 20% for
testing.

B. Evaluation metrics

To assess the performance of the model, standard evaluation
metrics can be employed, including [5]:
Precision: The ratio of correctly predicted positive instances
to the total predicted positives:

Precision =
TP

TP + FP
(5)



Recall: The ratio of correctly identified positive instances to
the total actual positives:

Recall =
TP

TP + FN
(6)

F1-score: The harmonic mean of precision and recall, provid-
ing a balanced measure of both:

F1-score = 2× precision × recall
precision + recall

(7)

Accuracy: The ratio of correct predictions to the total number
of predictions made:

Acc =
TP + TN

TP + TN + FP + FN
(8)

C. Results

The performance evaluation, presented in Table III, reveals
that VGG16 outperforms the other models, achieving the
highest accuracy. This superior performance suggests that
VGG16’s deeper architecture allows it to capture and process
more complex features, making it particularly effective for the
given task. Additionally, when compared to current state-of-
the-art approaches, VGG16 demonstrates competitive or even
better results, reinforcing its suitability for similar applications.
After selecting VGG16, we evaluate the proposed approach

TABLE III
PERFORMANCE METRICS OF DIFFERENT DEEP LEARNING MODELS ON THE

MICC-F220, MICC-F2000, CASIA-1, AND CASIA-2 DATASETS

Precision Recall F1-scoreDataset Deep learning
model Acc A F A F A F

VGG16 0.93 1.0 0.88 0.86 1.0 0.93 0.94
Resnet18 0.91 1.0 0.85 0.82 1.0 0.90 0.92
Alexnet 0.89 1.0 0.81 0.77 1.0 0.87 0.90

M
IC

C
-F

22
0

Densenet121 0.91 1.0 0.85 0.82 1.0 0.90 0.92
VGG16 0.90 0.88 0.94 0.97 0.76 0.93 0.84

Resnet18 0.89 0.88 0.91 0.96 0.76 0.92 0.83
Alexnet 0.88 0.88 0.88 0.95 0.76 0.91 0.82

M
IC

C
-F

20
00

Densenet121 0.90 0.91 0.90 0.97 0.76 0.92 0.84
VGG16 0.91 0.87 0.92 0.96 0.82 0.92 0.88

Resnet18 0.88 0.89 0.89 0.94 0.81 0.91 0.87
Alexnet 0.85 0.84 0.85 0.91 0.79 0.88 0.83

C
A

SI
A

-1

Densenet121 0.89 0.90 0.88 0.95 0.78 0.91 0.84
VGG16 0.90 0.90 0.92 0.97 0.80 0.93 0.87

Resnet18 0.87 0.88 0.89 0.95 0.75 0.89 0.82
Alexnet 0.85 0.82 0.84 0.90 0.79 0.86 0.81

C
A

SI
A

-2

Densenet121 0.88 0.88 0.87 0.94 0.76 0.89 0.83

on the MICC-F2000 dataset. The results in Table IV and the
confusion matrix in Figure 2 demonstrate its effectiveness in
detecting digital forgery. Key findings show that the method
provides:

• Balanced precision and recall: Effective detection with
minimal false positives.

• Robustness: Handling a range of forgery types, from
subtle to overt.

• Low false positives: Ensures authentic images are not
wrongly flagged.

The experimental results presented in Table IV, along
with the confusion matrix in Figure 2, on the MICC-F2000
dataset, clearly demonstrate the effectiveness of the suggested
method in detecting digital forgery. These findings highlight

TABLE IV
PERFORMANCE OF PROPOSED APPROACH

Metric Value
Number of forged images 492
Number of authentic images 508
Accuracy 98.80%
Precision 99.59%
Recall 98.00%
F1-Score 0.99
Total predictions 1000
Correct predictions 988
Incorrect predictions 12

99.61%
506

97.97%
482

0.39%
2

2.03%
10

Authentic

A
u
th
en
ti
c

Forged

Fo
rg
ed

Confusion matrix

A
ct

u
al

Predicted

Fig. 2. Confusion matrix of proposed approach

the robustness and accuracy of the approach in distinguishing
between authentic and manipulated images, underscoring its
potential for practical applications in digital forensics.

TABLE V
PERFORMANCE ASSESSMENT OF PROPOSED APPROACH IN COMPARISON

TO RELATED WORK ON MICCF2000

Ref Year Methods Performances
[28] 2021 Smaller VGGNet and Mo-

bileNet
Acc=85%

[14] 2022 Pre-trained AlexNet
model

Acc=94%

[29] 2022 Hybrid deep learning
model

Acc=95%

[30] 2023 CNN Acc=89%
[6] 2023 PointRend-RegNetX Acc=86.4%
[31] 2024 Combined SIFT and RVM

model
Acc=94%

[9] 2024 Combined MobileNetV2,
PCA and random forest

Acc=96.75%

[8] 2024 Combined MobileNetV2,
PCA and random forest

Acc=96.37%

Proposed
approach

2025 Hybrid approach based
on Vgg16, cosine similar-
ity and SVM

Acc=98.80%

Furthermore, Table V presents a comparison of the accuracy
achieved by the suggested approach with various state-of-the-
art methods [6], [14], [28]–[31] for the detection of digital



image forgery. By leveraging complementary strengths, the
proposed method significantly improves detection accuracy
and demonstrates strong adaptability to evolving forgery tech-
niques.

V. CONCLUSION

This study has put forward a hybrid image forgery detection
method that combines VGG16-based deep feature extraction,
cosine similarity for block comparison and SVM for classifica-
tion. Among four evaluated CNN models (VGG16, ResNet18,
DenseNet121 and AlexNet) VGG16 has achieved the highest
accuracy. Cosine similarity has improved the model sensitivity
to subtle forgeries, resulting in a precision of 99.59%, a recall
of 98.00%, an F1-score of 0.99 and accuracy of 98.80% on the
MICC-F2000 dataset. While the method integrates well-known
components, its contribution lies in their effective combination
and empirical validation, offering a competitive and robust
solution to complex forgery detection. Future work will ex-
plore forgery type identification and lightweight, interpretable
models to further enhance practical applicability.
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