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Abstract—The analysis of human body movements plays a cru-
cial role in physical rehabilitation, enabling accurate assessment
and feedback for patients undergoing therapy. However, the lack
of standardized datasets and benchmarks limits the development
of robust Al-based evaluation models. In this paper, we propose a
benchmark for human body movements in the context of physical
rehabilitation exercises. A key contribution is the creation of a
custom dataset comprising 400 annotated images, providing a
valuable resource for evaluating motion analysis models. After
extracting body landmarks, we compare multiple architectures,
including a simple artificial neural network (ANN), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), long
short-term memory (LSTM), gated recurrent units (GRU), long-
term recurrent convolutional networks (LRCN), and bidirectional
LSTM (BiLSTM). The experimental results demonstrate the
superiority of the BILSTM model with an accuracy equal to 91 %,
highlighting its potential for improving the automatic assessment
of rehabilitation exercises. This benchmark serves as a foundation
for future research in Al-driven rehabilitation monitoring.

Index Terms—Deep learning, LSTM, BLSTM, Human Body
Movements, Physical Rehabilitation Exercises, Movement assess-
ment, Kinect, Vicon.

I. INTRODUCTION

With the rise of telemedicine and digital health, healthcare
in cyberspace has become an increasingly important aspect of
modern medicine. In particular, the integration of technology
with physical rehabilitation movements has shown great
promise. Remote monitoring and coaching through cameras,
wearable devices and mobile apps can allow healthcare
professionals to track patients’ progress and provide guidance
outside of traditional clinical settings.

A home exercise solution can make the performance of
physiotherapy and rehabilitation exercises easier for patients
who are unable to move. Indeed, achieving a recommended
set of physical exercises in a home environment is often an
important component of a patient’s rehabilitation treatment.
According to the literature, over 90% of rehabilitation
sessions are conducted in a home-based environment [1].

There are ongoing efforts to develop telerehabilitation
programs that can be carried out in patient homes, and these

programs may become a viable option for certain patients
in the future [2]. The objectives of this work are to design
a home-based tele-rehabilitation protocol for patients. We
need to design a solution that can accurately capture body
movements and assess exercise quality in real-time, in a home
environment, without direct supervision from a therapist.
Challenges include managing different patient morphologies,
varying lighting conditions, the need to differentiate between
very similar postures, and accounting for temporal aspects of
movements.

We aim to capture body movements during therapy sessions
and automatically assess patient performance and adherence
to recommended exercises.

To accomplish this goal, we have:

o Compiled a new dataset consisting of 400 JPG annotated
images representing four rehabilitation exercises.

o Conducted an in-depth analysis of human postures by
identifying precise anatomical landmarks. Based on these
key points, joint connections were mapped to compute an-
gular measurements relative to their spatial positions. The
extracted angular data were structured into a dataframe.

« Investigated various architectures for data analysis, in-
cluding CNN, RNN, LSTM, BiLSTM, GRU, and LRCN.
These models incorporate both temporal dimensions
(tracking posture evolution over time) and morphological
variations (body differences) to assess postures effec-
tively.

Results point out that the BLSTM architecture outperformed
the other architectures, achieving a precision rate of 91.03%
on the proposed database.

The GRU model achieves a precision of 8§7%, the precision
of the RNN is 85%, and that of the LSTM is 81%. The
simple neural networks and the CNN show lower precisions,
equal to 73% and 67% respectively. The LRCN, achieves an
accuracy of only 71%.

The remainder of this paper is organized as follows.
The next section presents the literature work on deep



learning strategies applied to assess physical rehabilitation
exercises. Section III details the experimental protocol, the
database collection, the obtained results, and their discussion.
Section IV presents the main conclusion of this work and
some future work.

II. RELATED WORK

Mathematical modeling and representation of human
movements typically fall into two main categories: top-
down approaches, which involve introducing hidden states
to describe the temporal dynamics of the movements,
and bottom-up approaches, which utilize local features to
represent the movements. The first category commonly uses
methods such as Kalman filters [7], hidden Markov models
[8], [9], and Gaussian mixture models [10].

The recent advancements in artificial neural networks
(NNs) have generated considerable interest in their potential
for modeling and analyzing human motions [11]. Long Short-
Term Memory (LSTM) and Bidirectional LSTM (BLSTM)
are two popular types of recurrent neural networks (RNNs)
that have been widely used in various fields of research.
LSTM and BLSTM are effective in modeling sequential data,
such as handwriting recognition [12], speech recognition [13],
fingerprint recognition [14], keystroke dynamics recognition
[15] due to their ability to capture long-term dependencies
and handle vanishing and exploding gradients. Furthermore,
this technology has been researched extensively for various
real-life applications, including driver action recognition [16],
safe intelligent transportation systems (ITS) [17], video text
recognition [18], and many others.

LSTM was first introduced by Hochreiter and Schmidhuber
in 1997 [19] as a solution to the vanishing gradient problem
in traditional RNNs. LSTM uses a memory cell, input gate,
forget gate, and output gate to control the flow of information
through the network. The memory cell allows the network to
store information over time, while the gates regulate the flow
of information into and out of the cell.

The recognition of human physical rehabilitation movements
using machine learning algorithms, especially LSTM and
BLSTM has shown promising results in recent research [20],
[21].

LSTM and BLSTM architectures have been utilized to
model the complex temporal dependencies present in the
rehabilitation movement data. The input to the network
consists of time-series data of joint angles, accelerations
[22], positions, and other kinematic parameters collected
from sensors attached to the patient’s body [23]-[25] or from
cameras installed in front of the patient.

However, challenges remain, particularly in adapting to
interindividual morphological variations, minimizing latency
for truly real-time feedback, and generalizing these systems
to unstructured environments (variable lighting, occlusions).
The integration of these technologies into mainstream clinical
applications also requires validating their robustness in
uncontrolled settings. This is why selecting the most suitable
database remains a significant hurdle.

Indeed, several databases, such as IRDS [3], KIMORE
[4], and UI-PRMD [5], have been created and applied within
the rehabilitation field. However, these datasets present major
limitations for the real-time implementation of deep learning
algorithms in practical contexts:

o Controlled Lighting Conditions: Collected in laboratory
settings under stable lighting, these datasets struggle
to generalize models to real-world environments where
illumination varies unpredictably.

o Rigid Camera Configurations: The fixed camera posi-
tions, optimized for experimental captures, do not reflect
dynamic scenarios (e.g., varying angles, non-standard
movements) encountered in clinical or home settings.

e Dependence on Specialized Equipment: The use of ex-
pensive sensors (e.g., Kinect V2, Vicon systems) limits
compatibility with accessible devices (webcams, smart-
phones), restricting large-scale adoption.

A new dataset is being developed to:

« Incorporate realistic lighting variations, enhancing model

DATASET Target group Population ~ Sensors Physical activity Collected Modalities ~ Limitations
IRDS [3] General 29 Kinect V1 Several repetitions of nine Skeletal data, Limited number of modalities,
general rehabilitation depth images limited number of subjects,
exercises discrete labels suited only for
HAR research, imbalanced data.
KIMORE [4] Back pain, Stroke, 78 Kinect V2 5 repetitions of 5 exercises Skeleton data, Specific target population,
Parkinson’s disease for back pain depth images, Specific physical activities,
RGB (non-public) Limited number of actions.
UI-PRMD [5]  General 10 Kinect and 10 repetitions of 10 general ~ Skeleton data Limited number of modalities,
VICON rehabilitation exercises. limited number of subjects.
AHA-3D [6] Assessment of lower 21 Kinect V2 79 sequences of 4 actions Skeleton data, Specific physical activities,
body fitness levels RGB camera  (lower limb) depth images, limited to a few limbs

RGB images

TABLE I: analysis of some available databases.



robustness.

o Represent dynamic camera positions, including simulated
movements and variable angles.

« Ensure compatibility with standard hardware, facilitating
real-world usability.

The proposed dataset aims to bridge the gap between
controlled environments and clinical needs, providing a cost-
effective solution tailored to the challenges of real-time reha-
bilitation.

III. PROPOSED BENCHMARK FOR MOTION RECOGNITION
SYSTEM

A. Data Collection

Building upon the UI-PRMD dataset [5] , we developed
a dataset specifically tailored to our domain, prioritizing
accessibility and practicality. Unlike many existing approaches
that rely on specialized hardware and motion capture sensors,
often making implementation costly, our solution leverages
readily available resources. The posture data used in
our study are sourced from publicly accessible online
sources, providing a cost-effective alternative. Additionally,
most existing datasets are proprietary or require payment,
restricting their usability. In contrast, our approach ensures
greater accessibility by enabling real-time detection using
only a standard camera. Furthermore, our dataset addresses
common challenges related to lighting conditions, camera
angles, and patient positioning, enhancing its robustness for
real-world applications.

This dataset consists of 400 JPG images, organized into four
distinct folders, each corresponding to a specific rehabilitation
exercise posture:

o Deep squat,

o Hurdle step,

o Inline lunge, and

« Side lunge.

These folders are grouped within a main directory. To ensure
diversity and relevance in the targeted postures, all images
were sourced from Google Images.

B. Feature Extraction

In our approach, we utilized MediaPipe library [26] to
detect and visualize human body landmarks on a given
image. When key points are successfully identified, they
are overlaid on the image, each represented by a small red
circle as depicted in Fig.1. The position of each landmark is
determined using normalized coordinates (x, y), which are
then scaled by the image dimensions to obtain their exact
positions on the screen.

Extracting angles from landmarks detected in images is a
critical step in pose analysis, especially for applications such
as posture correction or activity recognition. Using tools like
MediaPipe Pose, key points of the body (e.g., joints such as
shoulders, elbows, hips, and knees) are identified in the image.

Pose Keypoints
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Fig. 1: Detection of human body landmarks

These key points are then used to calculate joint angles using
trigonometric principles.

The angle formed by three points (two limb extremities and
the central joint) is calculated using the arctangent function.
The formula applied is as follows:

Angle = |arctan 2(Cy, — By, Cy — B;)—

arctan2(A, — By, A, — B;)(1)

Where:

B represents the central joint (e.g., elbow or knee), A and
C are the adjacent points.

To ensure that the angle remains between 0° and 180°, it
is normalized as follows:

if angle < 180°

. o 2
if angle > 180

1
angle = ang'e,
360° — angle,

This normalization ensures measurement consistency and
provides an accurate representation of body posture. The ex-
tracted angles serve as key features for pose analysis, enabling
deviation detection and facilitating appropriate corrections.

Angles are calculated for various joints based on the key
point numbering provided by MediaPipe Pose. The primary
analyzed joints include: the upper body, represented by the
shoulders and elbows; the lower body, represented by the hips
and knees; and the overall torso alignment. These angles pro-
vide a comprehensive representation of body posture, enabling
detailed and precise analysis.

The angles calculated for each image are stored in a list,
thus forming a set of features. The associated labels, extracted
from the folder name corresponding to the pose category,
are added to another list. Once all the images in a folder
are processed, these lists are combined to create a Pandas
DataFrame.

This DataFrame contains columns representing the names
of the calculated angles (e.g., leftelbow, rightelbow, leftknee,
etc.), as well as an additional column, label, which indicates
the corresponding pose category. Finally, the DataFrame is
saved as a CSV file titled pose-data.csv. Each row in this file
represents an individual image, including its extracted angles



Category Articulation Description
Left Elbows Angle between left shoulder, left elbow
Elbows .
and left wrist
Right Elbows Angle between right shoulder, right elbow
and right wrist
Shoulders Left Shoulders Angle between left hip, left shoulder
and left elbow
Right Shoulders  Angle between right hip, right shoulder
and right elbow
Left Knees Angle between left hip, left knee and left
Knees
ankle
Right Knees Angle between right hip, right knee
and right ankle
. Left Hips Angle between left shoulder, left hip
Hips
and left knee
Right Hips Angle between right shoulder, right hip
and right knee
Left Torso Angle between left shoulder, left hip
Torso

and left ankle

Right Torso Angle between right shoulder, right hip

and right ankle

TABLE II: Description of joint angles for postural analysis

and associated pose category. This structure allows for efficient
data organization and facilitates its use for analysis or machine
learning tasks.

C. Model Evaluation

1) Data management : Splitting data into training and
testing sets is a crucial step in the machine learning model
development process. It allows evaluating the model’s perfor-
mance on previously unseen data. 20% of the data is reserved
for the test set, while the remaining 80% is used for model
training. We ensured the reproducibility of the results by
setting a constant random state. This split ensures that the
model is trained on a subset of the data and evaluated on
a separate set, which allows for efficient measurement of its
performance and reduces the risk of overfitting.

D. Obtained results

The proposed architecture demonstrated promising results
as it was able to recognize the four rehabilitation exercises
based on the collected images.

The effectiveness of the architectures tested was assessed
in the test set of the proposed database, with accuracy serving
as the primary evaluation metric. Comparing the results
obtained in Figure 2, we notice a considerable improvement
in the classification accuracy when dealing with the BLSTM
architecture. In fact, BLSTM can extract more comprehensive
features from the data. It can capture different patterns and
representations from the forward and backward directions,
enabling the model to capture complex relationships and
nuances in the data more effectively.
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Fig. 2: Obtained performances for all tested models

The confusion matrix for human body movement classifi-
cation in physical rehabilitation exercises provides an insight-
ful analysis of model performance in different exercises as
shown in Figure 3. Each row represents the actual exercise
performed, while each column indicates the predicted exercise,
allowing for a clear visualization of correct and misclassified
instances. The results highlight that all exercises are gener-
ally well recognized, with high classification accuracy across
most movements. Notably, exercise number 3 exhibits the
highest performance, showing the least misclassification and
the highest true positive rate. This suggests that the model is
particularly effective in distinguishing this exercise from the
others, possibly due to its distinct motion patterns or well-
represented features in the dataset.

E. Comaprison

The table III provides a comparative analysis of various
research approaches in the field of physical rehabilitation exer-
cise recognition and assessment, emphasizing their methodolo-
gies, datasets, and achieved accuracies. Notably, my approach
distinguishes itself through the use of the BILSTM architecture
applied to the collected data, achieving an impressive accuracy
of 91.03%, surpassing all other approaches.

Article Method Accuracy
Proposed approach BILSTM 91.03%
[27] CNN(YOLO) 84%
[28] CNN 82%
[21] LSTM 83%

TABLE III: Comparison

IV. CONCLUSION

In this paper, we propose a system that allows the assess-
ment of human posture during physical rehabilitation exercises
by Deep Learning.

A key contribution of this work is the development of a
custom dataset comprising 400 annotated images of 4 dif-
ferent rehabilitation exercises. Following landmark extraction,
multiple architectures were evaluated, including CNN, RNN,
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Fig. 3: Confusion matrices of the implemented architectures



LSTM, GRU, LRCN, and BiLSTM. The results demonstrated
the superior accuracy of the BiLSTM model.

This paper put forward a novel framework for the assess-

ment of home-based rehabilitation that investigates a deep
neural network model designed to handle spatial and temporal
variability in human movements.

The obtained results are promising and can be further

enhanced by incorporating additional rehabilitation exercises
into the dataset. Furthermore, we plan to implement this
approach on an FPGA board to assess its performance in a
real-world application.
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