
Balancing Accuracy and Efficiency: Navigating The
Trade-off Between Machine-Readable Code

Detection and Data Size Reduction
Imen Jegham, Ons Loukil, Besma Guesmi, David Moloney

Ubotica Technologies, Dublin, Ireland;
Email: {imen.jegham, ons.loukil, besma.guesmi, david.moloney}@ubotica.com

Abstract—Detecting machine-readable codes in industrial man-
ufacturing is a critical yet challenging task, as it directly impacts
both defect detection and broader visual anomaly detection. The
complexity of visual data, coupled with high-speed production
processes generating vast volumes of information, makes accurate
and efficient detection essential for ensuring product quality and
operational efficiency. This paper takes significant steps toward
addressing these challenges by identifying and categorizing key
issues related to machine-readable code defect detection, intro-
ducing the first publicly available and challenging dataset as
a benchmark for future studies, and exploring techniques to
enhance both detection performance and data storage efficiency.
Experimental results demonstrate that leveraging the YUV color
space, combined with data compression, significantly improves
detection accuracy while minimizing storage requirements. This
work highlights the importance of balancing data complexity,
storage optimization, and detection reliability, laying a strong
foundation for future advancements in defect detection, anomaly
identification, and cost-efficient industrial automation.

Index Terms—Visual Inspection, Machine Readable code De-
tection, Barcode, QRCode, Industrial Manufacturing, Uncon-
trolled Environments, Visual Anomaly Detection

I. INTRODUCTION

Machine-readable codes have become widely adopted
across various domains due to their numerous advantages, such
as high-density encoding, the ability to store large amounts of
information, low production costs, and ease of manufacturing
[Nguyen, 2024]. Machine-readable codes refer to patterns or
symbols that can be automatically recognized and interpreted
by machines, facilitating rapid data retrieval and processing.
The most common types are barcodes and QR codes. In
industrial manufacturing systems, machine-readable codes are
instrumental in enhancing traceability, streamlining inventory
management, and improving quality control [Gazeau et al.,
2024]. By embedding essential product information directly
onto components or packaging, machine-readable codes enable
seamless integration with automated systems, facilitating real-
time tracking and ensuring operational efficiency in com-
plex production environments. In industrial manufacturing,
various defects can occur, such as blurred printing, stains,
smudges, and misalignments [Zhao et al., 2024]. These de-
grade machine-readable code quality, reducing recognition
rates and potentially causing misreading or failure. Such
issues undermine functionality, especially in critical applica-
tions requiring accurate and timely data retrieval. Ensuring

production quality requires detecting both the codes and their
defects early, preventing failures before they impact critical
applications. However, detecting machine-readable codes and
their defects presents several challenges, primarily due to the
limitations of datasets used for this task.

While high real-time detection performance is crucial, op-
timizing data size is equally essential for efficiency and relia-
bility in industrial manufacturing systems. The vast amount of
visual data generated in these environments, if not properly
managed, increases storage demands, transmission latency,
and computational overhead. These challenges hinder real-
time processing and complicate deployment on resource-
constrained hardware, such as embedded systems and edge
devices. Reducing data size while maintaining real-time de-
tection accuracy enables faster inference, lowers operational
costs, and facilitates seamless integration into automated pro-
duction workflows.

In this paper, we take the first step toward balancing real-
time detection of machine-readable codes and their anomalies
with data size reduction in industrial manufacturing.

The main contributions of this paper can be summarized as
follows:

• We provide a comprehensive analysis of the challenges
in detecting machine-readable codes and their anomalies
in industrial environments, highlighting key limitations in
existing approaches.

• We construct a challenging and diverse machine-readable
codes dataset. This dataset will be publicly available.

• We conduct an in-depth study on data size reduction,
applying various optimization strategies to minimize stor-
age and computational costs while analyzing the trade-off
between real-time detection performance and data size
optimization.

The rest of this paper is organized as follows. Section 2 details
the challenges and issues related to machine-readable code de-
tection and classification. In Section 3, we review related work.
Section 4 introduces our strategy for enhancing machine-
readable code detection performance while optimizing data
storage. Section 5 presents the experimental results, followed
by a discussion in Section 6. Finally, Section 7 concludes the
paper and outlines directions for future work.



II. RELATED WORK

Machine-readable code detection and analysis is a critical
visual identification task within industrial surface inspection.
Early detection algorithms generally relied on traditional ma-
chine learning techniques for region proposal [Chen et al.,
2021]. These methods are effective for identifying machine-
readable codes with distinct and easily recognizable character-
istics. However, they are often slow and computationally ex-
pensive, particularly when dealing with complex backgrounds.
With the recent advancement of deep learning, significant
improvements have been achieved in various visual tasks,
including object detection, and industrial defect segmentation
[Bhatt et al., 2021]. Among various research fields, machine-
readable code detection and classification is a key domain
that has widely adopted deep learning, offering significant
advantages over traditional approaches [Jia et al., 2020], [Yuan
et al., 2019]. In complex scenes, machine-readable codes may
appear blurred due to pixel-level distortions, distance varia-
tions, or other factors, and they may also undergo rotations
and deformations. In such cases, deep learning-based detec-
tion methods have proven their effectiveness in addressing
these critical challenges [Kamnardsiri et al., 2022]. In this
matter, to face multiscale and multiview issues, Zhang et
al. [Zhang et al., 2019] proposed a region-based end-to-end
network to accurately localize and classify 1D barcodes and
QR codes in complex environments. Their network includes
two specialized layers: a quadrilateral regression layer for
detecting arbitrary quadrilateral bounding boxes and a Multi-
scale Spatial Pyramid Pooling (MSPP) layer to enhance the
detection accuracy of small-scale barcodes. Peng et al. [Peng
et al., 2020] integrated a Feature Pyramid Network module
into Faster R-CNN to enhance the detection performance of
small and multi-scale QR codes. Recently, given the growing
importance of real-time machine-readable code detection in
industrial applications and its increasing criticality in produc-
tion lines, Chen et al. [Chen et al., 2023] proposed a rapid
QR code detection approach based on multistage stepwise
discrimination and a compressed MobileNet. Zhao et al. [Zhao
et al., 2024] constructed their own QR code defect dataset
and proposed an enhanced QR code detection and surface
defect classification algorithm based on YOLOv8, referred
to as YOLOv8-QR. Although these methods have demon-
strated strong real-time QR code detection and classification
performance, they have not focused on optimizing data size,
making them less suitable for industrial real-time applications.
However, data size reduction is crucial in such applications,
as it optimizes storage, minimizes transmission latency, and
enables efficient processing on resource-constrained hardware.
Several methods for data size reduction have been proposed
in the literature, but none have been applied to machine-
readable code images. Several methods for data size reduction
have been proposed in the literature [Yang and Mandt, 2023],
[Chan et al., 2022]. However, none of these methods have been
specifically applied to machine-readable code images.

In this paper, we study and select an efficient real-time

detector to, unprecedentedly, analyse the impact of data size
reduction on detection performance and explore the trade-off
between detection accuracy and data size optimization.

III. CHALLENGES AND ISSUES

In industrial manufacturing systems, detecting machine-
readable codes and classifying their defects present significant
challenges that can be broadly categorized into two main
groups: hardware constraints and data-related issues. Despite
their importance, these challenges remain underexplored, con-
tributing to the scarcity of public datasets that accurately
capture these complexities.

A. Hardware constraints

One of the most pressing hardware-related challenges in
industrial manufacturing systems is the issue of storage. The
production process generates massive volumes of data, requir-
ing advanced storage solutions capable of efficiently managing
the size and complexity of this data. Additionally, the need
for real-time detection imposes stringent requirements on data
processing speed to ensure seamless integration with high-
speed production lines.

B. Data-related issues

Data-related issues in machine-readable code detection and
classification are various and complex. Among these, the
most prominent is the notable lack of sufficient and diverse
training data, which greatly hinders the development and
performance of robust machine learning models. Moreover,
data complexity presents a major challenge. Machine-readable
codes are frequently embedded in visually noisy or complex
environments. This clutter makes it challenging to isolate the
machine-readable code from its surroundings, particularly in
dynamic settings such as production lines. Furthermore, the
diversity of machine-readable codes in terms of type, size,
orientation, printing quality, and placement further complicates
detection. In complex real-world industrial settings, environ-
mental conditions introduce additional challenges. Variations
in lighting can affect the visibility of machine-readable codes,
while transparent backgrounds make detection more difficult
when codes are printed on translucent or see-through materials.
Shadows can obscure critical portions of the machine-readable
code, and small defects, which, though seemingly minor, can
still disrupt functionality. Such variability underscores the
need for robust detection systems capable of ensuring reliable
performance in industrial inspection applications. Moreover,
machine-readable defect code detection and classification task
faces additional challenges due to defect variability and scale.
Common defects include blur, where the machine-readable
code loses sharpness; offset, caused by the misalignment
of machine-readable code elements; stains in the form of
marks or spots; and peripheral stains, which are smudges or
blemishes along the edges of the machine-readable code [Zhao
et al., 2024]. However, unexpected defects can also occur,
further complicating detection. Additionally, in industrial envi-
ronments, anomalies are rare, resulting in highly imbalanced



datasets where the majority of instances are normal (nega-
tive) samples, while abnormal (positive) samples are either
scarce or entirely absent. This imbalance complicates models
training, as the models may struggle to effectively detect rare
defects amidst the overwhelming number of normal instances.
Moreover, in industrial visual inspection, high-resolution data
capture is often used to detect even the smallest defects,
which can be challenging to discern. These factors, combined
with the rapid pace of industrial manufacturing processes,
significantly increase the difficulty of accurately identifying
and isolating machine-readable codes in real time.

IV. APPROACH DESCRIPTION

In this work, we study and select an efficient real-time detec-
tor to reliably detect machine-readable codes while optimizing
data size. Our goal is to reduce storage and computational
costs without compromising detection performance, which is
crucial for industrial applications.

A. Convolution-based machine-readable code detection

Deep learning-based object detectors can be broadly classi-
fied into two main categories: multi-stage detectors and single-
stage detectors. Single-stage detectors offer reduced computa-
tional time by directly mapping image pixels to bounding box
coordinates and class probabilities, bypassing the intermediate
stages used in multi-stage approaches. Among single-stage
detectors, YOLO stands out as one of the most widely used
due to its ability to achieve an excellent balance between
speed and accuracy. Its robustness in detecting a diverse
range of objects, including small ones, makes it particularly
effective for various applications. Since its inception, the
YOLO family has undergone multiple iterations, with each
version addressing previous limitations and enhancing perfor-
mance. YOLOv8 has demonstrated exceptional effectiveness
in detecting small objects [Terven et al., 2023]. It employs
an anchor-free architecture with a decoupled head, enabling
the independent processing of objectness, classification, and
regression tasks. This design allows each branch to specialize
in its specific task, thereby improving the model’s overall
accuracy. The YOLOv8 architecture incorporates several key
components:a modified CSPDarknet53 backbone, a cross-
stage partial bottleneck with two convolutions (C2f module)
that combines high-level features with contextual information
to enhance detection accuracy, a spatial pyramid pooling fast
(SPPF) layer to expedite computation by pooling features into
a fixed-size map, and batch normalization with SiLU activation
for each convolution operation.

B. Data size optimisation

In industrial applications, optimizing data size while pre-
serving performance is crucial to address storage limitations
and enhance processing efficiency. For machine-readable code
detection, we applied three key techniques to reduce data size
without compromising model accuracy: color space transfor-
mation, data type analysis, and data compression.

1) Color space transformation: Transforming the color
space of images is a crucial step in optimizing dataset size and
improving model efficiency [Yang et al., 2010], [Starosolski,
2014]. By eliminating redundant or unnecessary information,
these transformations allow the focus to shift to the most
critical features for machine-readable code detection. This
approach was particularly beneficial in addressing storage con-
straints within industrial environments and adapting datasets
for use in resource-limited systems. Images in the Red-Green-
Blue (RGB) color space can be transformed into other color
spaces to improve image processing, analysis, and reduce data
size. In this paper, we focus on three main color spaces: YUV,
grayscale, and binary.

• YUV color space: The YUV color space separates lumi-
nance (Y) from chrominance (U and V). Since machine-
readable code detection relies more heavily on contrast
and structure rather than color, the transformation from
RGB to YUV reduces file size while retaining essential
details. The conversion from RGB value to YUV is given
by Equation 1.

Y = 0.299×R+ 0.587×G+ 0.114×B

U = −0.14713×R− 0.28886×G+ 0.436×B

V = 0.615×R− 0.51499×G− 0.10001×B

(1)

• Grayscale color space: Transforming images to grayscale
effectively reduces storage requirements by converting
the three-channel RGB information into a single inten-
sity channel. This simplified representation preserves the
essential contrast patterns crucial for machine-readable
code detection while eliminating irrelevant color data,
thereby optimizing both storage efficiency and compu-
tational demands. The conversion from RGB value to
grayscale is given by Equation 2, a weighted sum of the
three color channels.

Grayscale = 0.2989×R+ 0.587×G+ 0.114×B
(2)

• Binary color space: In this transformation, grayscale
images are thresholded to create binary images, where
each pixel is represented as either black or white.

The data type of stored images was adjusted to refine
the balance between storage efficiency and computational
accuracy [Jayasankar et al., 2021]. The pixel data type was
converted from the default uint8 (8-bit unsigned integer) to
float16 (16-bit floating point) and float32 (32-bit floating point)
formats, allowing for an enhanced representation of pixel
intensity values. This conversion proved particularly useful
in improving numerical precision during preprocessing and
model training, especially for complex operations requiring
higher accuracy.

2) Data compression: Data compression is essential for
minimizing storage requirements while preserving the crit-
ical features necessary for accurate machine-readable code
detection [Kaur and Choudhary, 2016]. Different compression



rates were applied to optimize storage while maintaining the
quality required for detection tasks. The compression rate is
calculated using the Equation 3. Thus, The more the image is
compressed, the lower the compression rate becomes.

Compression Rate (CR) =
Size of Compressed Data

Size of Original Data
(3)

V. EXPERIMENTS

To highlight the importance of the strategy outlined, this
section offers a comprehensive overview of the results ob-
tained during the experimentation phase.

A. Experimental methodology

1) Experimental setup: All experiments are conducted on
a 64-bit computer with intel (R) CPU core (TM) 11th Gen
Intel(R) Core(TM) i7-11800H @ 2.30GHz, 24 GB of RAM,
and an NVIDIA GTX 1650 GPU with 6GB of VRAM. We
use the Adam optimizer with a learning rate of 0.01, a batch
size of 16, 400 epochs, and an image size of 320.

2) Data preparation: Due to the lack of a public challeng-
ing machine-readable code detection and classification dataset
that captures real-world challenges, we had to collect our own
dataset. On the other hand, the availability of public datasets
designed for barcode and QR code detection [Souchet, 2023],
as well as product recognition, facilitated our task. We selected
two datasets [Kamnardsiri et al., 2022] from different domains
(images captured from daily life consumer goods in supermar-
kets and images of parcels shot at post offices) to gather our
high-resolution images. A total of 101 machine-readable code
images with complex backgrounds were randomly selected
from the InventBar dataset. Using the Roboflow platform, we
manually annotated each image to create a labeled dataset
suitable for training and evaluation. To further enhance the
diversity of our dataset, we applied various data augmentation
techniques, including transformations such as rotations, adding
blur, and adjusting saturation and brightness. This process
significantly increased the variability of the data, enabling
the model to generalize better to unseen data. As a result,
we obtained a dataset consisting of 243 images, which was
split into two subsets: a training set and a validation set.
For the testing set, we manually selected and annotated 25
images from the InventBar and ParcelBar datasets. Moreover, a
total of 207 high-resolution images (1478x1108) with complex
backgrounds were randomly selected from the two datasets to
be pseudo-labeled.

In fact, pseudo-labeling is a semi-supervised learning tech-
nique that reduces the need for manual annotation while
increasing the amount of labeled data available for training,
ultimately enhancing model performance. By leveraging the
model’s own predictions on unlabeled data, this approach
expands the training dataset, improving generalization to real-
world variations. YOLOv8 offers five versions: YOLOv8n
(nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l
(large), and YOLOv8x (extra-large). Among them, YOLOv8n
is the most suitable for production lines due to its speed, with
a minimal number of parameters (3.2 million) and FLOPs

(8.7). Although its detection performance is lower (achieving
the smallest mAP on the COCO dataset), its computational
efficiency makes it ideal for real-time applications in industrial
settings, where speed and low resource consumption are criti-
cal. Manually annotated images are used to train the YOLOv8n
model. Once trained using the annotated data, the unlabeled
images are fed into the trained model for testing, generating
pseudo-labels. The significant difference between the training
and unlabeled data, as well as the complexity of the unlabeled
images, led to many false and missed detections. As a result, a
manual verification step was required to review the detections,
and images with false detections were removed. This process
resulted in a refined subset of 130 retained pseudo-labeled
images. Finally, these selected images, along with the initially
annotated ones, were used to retrain the YOLOv8n model.
Using the test set, we evaluate the effectiveness of the model
before and after pseudo-labeling. The obtained results are
reported in Table I. When comparing the results before and
after pseudo-labeling, we observe an improvement in terms
of mAP 50-95, precision and Average F1 score, highlighting
the importance of retraining to address data fracture and to
enhance the model’s ability to generalize.

TABLE I
YOLOV8N PERFORMANCES BEFORE AND AFTER PSEUDO-LABELING

PROCESS.

Metric Before pseudo-
labeling

After pseudo-
labeling

mAP 50-95 73.87% 83.35%
Precision 96.98% 97.49%
Recall 100% 100%
F1 score 0.98 0.99

B. Data size optimisation

To evaluate the efficiency of machine-readable code detec-
tion while minimizing storage requirements, we conducted a
comprehensive study on data size optimization. The goal was
to achieve a balance between detection performance and data
storage needs. Our investigation focused on three key aspects:
color space transformation, data type modification, and data
compression.

1) Color space transformation: We examined the impact
of converting RGB images into various color spaces, includ-
ing YUV, grayscale, and binary formats, to determine the
most storage-efficient representation while preserving detec-
tion accuracy. Unexpectedly, converting our data from RGB
to grayscale and binary while retaining the same data type led
to an increase in dataset size than a reduction, which was not
the case for data containing fewer details. On the other hand,
a significant reduction in size of around 15.7% was recorded
for the YUV color space. Additionally, machine-readable code
detection performance in terms of precision improved, while
the mAP slightly decreased for the YUV and binary color
spaces. Among the tested color spaces, the YUV format
achieved the best balance between detection accuracy and
storage reduction. This result underscores the importance of



preserving essential color information for effective machine-
readable code detection.

2) Data type modification: Since the YUV color space
yielded the best results, we conducted further analysis on
the impact of data types using this color space. Initially, the
data was encoded in the uint8 format, resulting in a dataset
size of 64.7 MB. We then experimented with float16 and
float32 encoding, which drastically increased the dataset size
to 2.84 GB and 5.68 GB, respectively, due to their higher
memory requirements per pixel. Consequently, the uint8 data
type proved to be the optimal choice.

3) Data compression: We began by compressing the raw
RGB data using various compression rates (85, 70, 50, 25,
15, and 10). Next, since the YUV color space demonstrated
the best balance between detection accuracy and storage
efficiency, we aimed to further reduce the size of the YUV
data. To achieve this, we applied chroma subsampling along
with compression techniques using the same rates previously
applied to the RGB data. Table II and Table III present an
evaluation of the image quality after compression in terms
of SSIM (Structural Similarity Index), PSNR (Peak Signal-
to-Noise Ratio), and MSE (Mean Squared Error) for RGB
and YUV images, respectively. According to these tables,
high image quality is maintained after compression, especially
with a significant reduction in size. The compression of YUV
images achieved excellent quality, while the compression of
RGB images resulted in good quality, though slightly lower
than that of YUV images.

• RGB data compression: As depicted in Figure 1, a
significant reduction in data size was achieved, decreas-
ing from 76.7 MB to 15.9 MB at a compression rate
of 10. Moreover, an overall improvement in detection
performance is noticed. A slight degradation in precision
was observed for low compression rates as excessive
compression introduces visual artifacts, such as the loss
of essential details or distortions, which interfere with
key visual features. These artifacts adversely affect the
model’s detection performance by degrading the quality
of critical information. For RGB images, although most
codes are detected, the model produces a significant
number of false positives.

CR 85 70 0 25 15 10

SSIM ↑ 0.996 0.994 0.95 0.909 0.875 0.846

PSNR ↑ 45.9 43.73 34.18 31.69 29.84 18.08

MSE ↓ 1.84 2.92 27.31 47.58 71.67 105.7
TABLE II

EVALUATION OF RGB IMAGE QUALITY AFTER COMPRESSION.

• YUV data compression: In addition to compression, we
employed chroma subsampling, commonly used in image
compression and processing, involves formats like YUV
4:2:2 (where the U and V components are horizontally
subsampled, halving the chrominance data) and YUV
4:2:0 (where the U and V components are subsampled

both horizontally and vertically, further reducing chromi-
nance data). This process involved converting RGB im-
ages to the YUV color space, followed by transformations
to YUV 4:2:2 and YUV 4:2:0 formats. As shown in
Figure 2, while chroma subsampling effectively reduces
data size, it results in an overall degradation in detection
performance. In addition, a significant reduction in data
size is observed, along with an overall improvement in
detection performance. Using the same high compression
rates, a greater reduction in size and a more substan-
tial enhancement in detection performance are achieved
compared to the RGB modality. However, for very low
compression rates (e.g., 15 and 10), a significant drop in
performance is recorded due to the poor image quality
after compression. Moreover, many codes are missed.

CR 85 70 0 25 15 10 YUV
4:2:2

YUV
4:2:0

SSIM ↑ 0.986 0.981 0.975 0.96 0.947 0.933 0.984 0.977

PSNR ↑ 47.9 46.2 44.76 42.1 39.58 37.23 47.24 45.61

MSE ↓ 1.132 1.655 2.278 4.12 7.28 12.7 1.346 1.93
TABLE III

EVALUATION OF YUV IMAGE QUALITY AFTER COMPRESSION.
V

A
LU

ES
 (

%
)

METRICS

Fig. 1. Machine-readable code detection performance and data size analysis
for RGB data types at varying compression rates.

V
A

LU
ES

 (
%

)

METRICS

Fig. 2. Machine-readable code detection performance and data size analysis
for YUV data types at varying compression rates.



VI. DISCUSSION AND FUTURE DIRECTIONS
Detection performance using YUV data after compression

consistently surpasses the baseline achieved with RGB data
or even uncompressed YUV data. This is because the Y
component (luminance) in the YUV format contains the
critical structural information, such as edges and contours,
which are key for machine-readable code detection. Even
after compression, these essential features are preserved in the
YUV space. The separation of luminance and chrominance
information in YUV allows it to better retain critical details
under compression compared to RGB, where all information is
mixed. As a result, detection performance with YUV remains
relatively stable, or even improves, at fairly low compres-
sion rates. Despite using the same compression rates, YUV
datasets consistently have smaller sizes compared to RGB
datasets. However, while RGB compressed data ensures that
all machine-readable codes are detected, YUV compressed
data sometimes leads to missed codes and false detections.
After applying chroma subsampling, while the luminance (Y)
component remains unchanged, the reduction in resolution of
the U and V components decrease color accuracy. Since color
information is particularly important for machine-readable
code detection, this results in degraded detection performance.
In summary, the experiments demonstrated effective control
over file size while maintaining high detection performance,
particularly with YUV data under compression. It is notewor-
thy that the test images used in this study were particularly
challenging. These images included cluttered backgrounds
and text in the Thai language that visually resembled bar-
codes. Additionally, the test images contain multiple machine-
readable codes per image. This paper presents a foundational
step toward detecting and classifying machine-readable code
in industrial manufacturing systems, addressing several real-
world challenges. However, significant efforts are still needed
to overcome the lack of training data for defective cases.
One key area for improvement is data augmentation, where
generating synthetic defect patterns could help diversify the
dataset and improve the model’s robustness to various defect
scenarios. Such data is rare and difficult to collect. Therefore,
it often needs to be synthesized. Additionally, the development
of lightweight and novel frameworks for defect detection
and classification could significantly enhance the system’s
performance and reliability, making it more applicable in real-
world industrial settings.

VII. CONCLUSION
In conclusion, this paper provides a critical first step toward

detecting and classifying machine-readable code in industrial
manufacturing systems by addressing key challenges. Our
experimentation demonstrated that the YUV color space, when
combined with data compression techniques, outperformed tra-
ditional RGB representation by achieving an optimal balance
between storage efficiency and detection accuracy. Despite
these advancements, further research is needed to tackle the
complexities of real-world industrial environments fully. The
insights and methods presented in this work lay a strong

foundation for future developments, advancing the capabilities
of automated visual inspection systems in industrial manufac-
turing.

REFERENCES

[Bhatt et al., 2021] Bhatt, P. M., Malhan, R. K., Rajendran, P., Shah, B. C.,
Thakar, S., Yoon, Y. J., and Gupta, S. K. (2021). Image-based surface
defect detection using deep learning: A review. Journal of Computing and
Information Science in Engineering, 21(4):040801.

[Chan et al., 2022] Chan, K. H. R., Yu, Y., You, C., Qi, H., Wright, J., and
Ma, Y. (2022). Redunet: A white-box deep network from the principle
of maximizing rate reduction. Journal of machine learning research,
23(114):1–103.

[Chen et al., 2023] Chen, R., Huang, H., Yu, Y., Ren, J., Wang, P., Zhao, H.,
and Lu, X. (2023). Rapid detection of multi-qr codes based on multistage
stepwise discrimination and a compressed mobilenet. IEEE Internet of
Things Journal, 10(18):15966–15979.

[Chen et al., 2021] Chen, Y., Ding, Y., Zhao, F., Zhang, E., Wu, Z., and
Shao, L. (2021). Surface defect detection methods for industrial products:
A review. Applied Sciences, 11(16):7657.

[Gazeau et al., 2024] Gazeau, B., Zaman, A., Minunno, R., and Shaikh,
F. (2024). Developing traceability systems for effective circular econ-
omy of plastic: A systematic review and meta-analysis. Sustainability,
16(22):9973.

[Jayasankar et al., 2021] Jayasankar, U., Thirumal, V., and Ponnurangam, D.
(2021). A survey on data compression techniques: From the perspective of
data quality, coding schemes, data type and applications. Journal of King
Saud University - Computer and Information Sciences, 33(2):119–140.

[Jia et al., 2020] Jia, J., Zhai, G., Ren, P., Zhang, J., Gao, Z., Min, X., and
Yang, X. (2020). Tiny-bdn: An efficient and compact barcode detection
network. IEEE Journal of Selected Topics in Signal Processing, 14(4):688–
699.

[Kamnardsiri et al., 2022] Kamnardsiri, T., Charoenkwan, P., Malang, C.,
and Wudhikarn, R. (2022). 1d barcode detection: Novel benchmark
datasets and comprehensive comparison of deep convolutional neural
network approaches. Sensors, 22(22):8788.

[Kaur and Choudhary, 2016] Kaur, R. and Choudhary, P. (2016). A review
of image compression techniques. Int. J. Comput. Appl, 142(1):8–11.

[Nguyen, 2024] Nguyen, D. (2024). Convenient efficiency: A media geneal-
ogy of qr codes. New Media & Society, 26(10):5742–5762.

[Peng et al., 2020] Peng, J., Yuan, S., and Yuan, X. (2020). Qr code detection
with faster-rcnn based on fpn. In Sun, X., Wang, J., and Bertino,
E., editors, Artificial Intelligence and Security, pages 434–443, Cham.
Springer International Publishing.

[Souchet, 2023] Souchet, B. (2023). List of barcode qr code datasets. Last
accessed 15/12/2024.

[Starosolski, 2014] Starosolski, R. (2014). New simple and efficient color
space transformations for lossless image compression. Journal of Visual
Communication and Image Representation, 25(5):1056–1063.

[Terven et al., 2023] Terven, J., Córdova-Esparza, D.-M., and Romero-
González, J.-A. (2023). A comprehensive review of yolo architectures in
computer vision: From yolov1 to yolov8 and yolo-nas. Machine Learning
and Knowledge Extraction, 5(4):1680–1716.

[Yang et al., 2010] Yang, J., Liu, C., and Zhang, L. (2010). Color space
normalization: Enhancing the discriminating power of color spaces for
face recognition. Pattern Recognition, 43(4):1454–1466.

[Yang and Mandt, 2023] Yang, Y. and Mandt, S. (2023). Computationally-
efficient neural image compression with shallow decoders. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
530–540.

[Yuan et al., 2019] Yuan, B., Li, Y., Jiang, F., Xu, X., Guo, Y., Zhao, J.,
Zhang, D., Guo, J., and Shen, X. (2019). Mu r-cnn: A two-dimensional
code instance segmentation network based on deep learning. Future
Internet, 11(9):197.

[Zhang et al., 2019] Zhang, J., Jia, J., Zhu, Z., Min, X., Zhai, G., and Zhang,
X.-P. (2019). Fine detection and classification of multi-class barcode
in complex environments. In 2019 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), pages 306–311.

[Zhao et al., 2024] Zhao, L., Liu, J., Ren, Y., Lin, C., Liu, J., Abbas, Z.,
Islam, M. S., and Xiao, G. (2024). Yolov8-qr: An improved yolov8 model
via attention mechanism for object detection of qr code defects. Computers
and Electrical Engineering, 118:109376.


