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Abstract—Keystroke dynamics, a behavioral biometric
modality, offers promising applications in authentication and
intrusion detection systems. However, the scarcity of publicly
available datasets due to privacy concerns limits research
progress. This paper presents a Generative Adversarial Network
(GAN) framework to generate synthetic keystroke dynamics
data that closely mimics real-world patterns. Using the DSL-
StrongPasswordData dataset, we pre-process and normalize
timing features and train a GAN with 100-dimensional latent
space, LeakyReLU activations, and binary cross-entropy loss.
We evaluated the synthetic data through visual comparisons
(boxplots, t-SNE projections) and statistical tests (Kolmogorov-
Smirnov), demonstrating that the generated distributions align
with real data (p-value > 0.05 for key features). Our results
highlight the potential of the GAN for sharing data that preserve
privacy and increase training sets for keystroke-based models.

Index Terms—User Authentication, Security, Deep Learning,
Keystroke Dynamics, Generative Adversarial Network, GAN,
Kolmogorov-Smirnov, Biometrics.

I. INTRODUCTION

Keystroke dynamics is an emerging behavioral biometric
modality that leverages typing patterns to authenticate users
[1]-[3]. Unlike traditional authentication methods such as
passwords or fingerprint recognition, keystroke dynamics of-
fers a non-intrusive, continuous authentication approach based
on an individual’s unique typing behavior [4]. This technique
has gained significant attention due to its potential applications
in cybersecurity, user authentication, and fraud detection [5],
[6].

Machine learning techniques have played a crucial role
in enhancing keystroke dynamics-based authentication [7].
However, conventional classification models often require
large amounts of labeled data to achieve high accuracy,
making them impractical for real-world applications where
the number of labeled samples per user is limited [8].
Moreover, research in this field faces a critical challenge: the
scarcity of publicly available datasets due to privacy concerns
and proprietary restrictions [9].

Traditional methods for addressing data scarcity (e.g.,
oversampling or Gaussian noise injection) often fail to

capture the complex temporal dependencies and user-
specific variances in keystroke dynamics [10]. Generative
Adversarial Networks (GANSs), which learn data distributions
adversarially, offer a promising alternative. Although GANs
have succeeded in generating synthetic images and time series
data [11], their application to keystroke dynamics, particularly
to preserve user-specific patterns, remains underexplored.

The main contributions of this work are as follows:

o Implementation of a GAN framework to generate
synthetic keystroke sequences, trained on the DSL-
StrongPasswordData dataset [7].

o Evaluation of synthetic data quality through:

- Visual analysis (t-SNE, boxplots).
- Statistical tests (Kolmogorov-Smirnov) to compare dis-
tributions with real data.

o Discussion of applications in biometric research and
limitations for future improvement.

The paper is structured as follows: Section 2 reviews related
work, Section 3 details the methodology, Section 4 presents
results, and Section 5 concludes with future directions.

II. RELATED WORK

Keystroke dynamics have been widely studied as a
behavioral biometric for user authentication and intrusion
detection [12]. However, research in this field faces significant
challenges due to data scarcity [13], as collecting large-scale
keystroke datasets raises privacy concerns and requires
extensive user participation [14], [15]. This limitation has
motivated recent explorations into synthetic data generation,
with GANs emerging as a promising solution to overcome
data availability constraints while preserving the statistical
properties of genuine typing patterns.

Acien et al. [16] demonstrated this for keystrokes in the con-
text of digital phenotyping, using a GAN to augment datasets
for authentication systems while avoiding privacy violations.
The synthetic data aims to support biomarker development for
psychomotor impairments due to neurodegenerative diseases
like Parkinson’s. Their work revealed that synthetic data



could maintain user-specific patterns (e.g., inter-key latencies)
crucial for discriminative tasks.

An other study [17] investigates the use of Conditional GAN
cGANSs to generate synthetic keystroke dynamics data for user
impersonation during the identification stage. The findings
suggest that cGANs can successfully imitate user keystroke
behavior, posing potential threats to keystroke authentication
systems.

cGANs demonstrated also its efficiency to generate
synthetic keystroke data aimed at impersonating authorized
users in keystroke authentication systems [18]. The research
considers scenarios where the sequence of typed words is
either known or unknown, demonstrating that cGAN-generated
keystroke patterns can effectively deceive authentication
mechanisms.

Moreover, keystroke dynamics faces two core challenges
that GANs address:

o Data Scarcity: Collecting large-scale keystroke datasets
is labor-intensive. Traditional oversampling like SMOTE
[10] fails to model complex timing distributions, whereas
GANs generate plausible sequences [16].

« Privacy Concerns: Real keystroke data may leak sensitive
information (e.g., typing content) [19]. GANs enable
anonymous synthetic data sharing.

III. METHODOLOGY
A. Dataset Description

We utilized the DSL-StrongPasswordData dataset from
Carnegie Mellon University [20], containing keystroke timing
data from 51 subjects typing passwords in 50 sessions (8
repetitions per session). Each sample includes:

o Temporal features: Hold time (e.g., H.period), key-down-

down times (e.g., DD.t.i), and key-up-down intervals

o Metadata: Subject ID (subject), session index (sessionln-

dex), and repetition number (rep)

B. Preprocessing Pipeline

The methodology begins with preprocessing the DSL-
StrongPasswordData dataset by :
o Metadata Removal: Discarded non-temporal features
(subject, sessionlndex, rep) to focus on typing patterns.
o Normalization: Applied MinMaxScaler(feature-range=[-
1, 1]) to all features, ensuring consistent input ranges for
GAN training

C. GAN Architecture
The GAN architecture consists of:

1) Generator: The Generator (G) is designed to transform
random noise into synthetic keystroke dynamics data that
mimic real typing patterns. Its architecture consists of:

o Input Layer:
- Takes a 100 dimensional latent vector (z) sampled from
a standard normal distribution N (0, 1)).

- This noise vector provides the stochastic foundation
for generating diverse samples.

o Hidden Layers:
- First Linear Layer: Expands the latent vector to 256
neurons with LeakyReLU activation (a = 0.2) to avoid
dead gradients.

- Second Linear Layer: Further expands to 512 neurons
with another LeakyReLU.

- Dropout (Optional): A dropout layer (p=0.3) can be
added to prevent overfitting during training.

o Output Layer:
- Projects the 512D representation to the 31-dimensional
feature space (matching the real keystroke data).

- Uses Tanh activation to ensure outputs are scaled to
[-1, 1], consistent with the normalized input data.

2) Discriminator: The Discriminator (D) acts as a binary
classifier to distinguish real keystroke data from synthetic
samples:

o Input Layer:

- Accepts 31-dimensional vectors (real or synthetic
keystroke features).

o Hidden Layers:
- First Linear Layer: Compresses input to 512 neurons
with LeakyReLU.

- Second Linear Layer: Further compresses to 256
neurons with LeakyReLU.

- Dropout (Optional): Dropout (p=0.3) can regularize the
discriminator.

o Output Layer:
- Reduces to a single neuron with Sigmoid activation,
outputting a probability (0 = fake, 1 = real).

D. Training Protocol

The models as show in Table I are trained adversarially for
1,000 epochs (batch size=64) using the Adam optimizer (Ir=

TABLE I: Training parameters

Parameter Value Rationale

Batch size 64 Balances memory/quality
Epochs 1000 Early stopping checked
Optimizer Adam B1 = 0.5, 82 = 0.999
Learning rate  0.0002  Stable GAN convergence
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Fig. 1: Architecture

0.0002) and Binary Cross-Entropy loss, with the Generator one and discuss them.

aiming to fool the Discriminator and the Discriminator im-

proving its detection accuracy. A. Distribution Similarity
The discriminator D aims to maximize classification accu-

racy for both real and generated samples. Its loss combines

two terms:

We compared the synthetic keystroke dynamics against
real data using:

1) Feature-wise Boxplots: This method quantifies how
LD = Ex ~ paata(z)[log D(2)]+E.«,_z)[log(1 — D(G(2)))] well synthetic data preserve the distributional properties of
individual keystroke features as depicted in Figure 2. The

Real Data Fake Data
(1) hold time feature (H.period) showed nearly identical quartile
distributions:
IV. RESULTS AND EVALUATION Real Data:
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Fig. 2: Feature-wise Boxplots



Synthetic Data:
- Median = 0.10 ms
- IQR = [0.09 ms, 0.11 ms]

Relative Difference:
- AMedian = 0.01 ms
- Relative Variation = 10.9%

The synthetic data’s median hold time (0.10 ms) is very
close to the real data (0.09 ms), with a minor absolute
difference of 0.01 ms. However, the 10.9% relative increase
suggests the GAN slightly overestimates typical hold times.

The Interquartile Range (IQR) of the synthetic data (IQR =
0.02 ms) is narrower than that of the real data’s (IQR = 0.04
ms), indicating:

o The GAN generates less variability in hold times.
o Synthetic values are more concentrated around the me-
dian.

2) t-SNE Dimensionality Reduction: It helps to visualize
high-dimensional structural similarity between real and syn-
thetic data in 2D [21].

As demonstrated in Figure 3, the synthetic samples gener-
ated by the model are closely clustered with the real data
points, indicating a high degree of similarity in structure
and distribution. The overlap between the two types of data
suggests that the generator has successfully captured the

B. Statistical Validation

For stattistical validation we used the Kolmogorov-Smirnov
(KS) Test [22]. It is a non-parametric statistical test used to
compare two probability distributions.

The KS statistic measures the maximum distance between
two empirical CDFs:

Dy, = sup |Fp(x) — G ()] (2)

where:

F,, (z) is the empirical CDF of the real data (sample size
n)

G () is the empirical CDF of the synthetic data (sample
size m,)

sup denotes the supremum

The p-value in the KS test estimates the probability of
observing a test statistic (D, m ):

For GAN evaluation, it quantifies how well the synthetic
keystroke data matches the real data distribution. The obtained
results are depicted in Table II.
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TABLE II: Statistical Comparison of H.period
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Fig. 3: t-SNE Dimensionality Reduction



D = 0.04397 suggests only a 4.4% max cumulative proba-
bility difference. P-value also demonstrates a small distribution
difference.

V. CONCLUSION AND FUTURE WORK

This study demonstrated the potential of Generative
Adversarial Networks (GANs) for synthesizing keystroke
dynamics data while preserving key statistical properties. Our
framework successfully generated synthetic sequences that
closely matched real data distributions, as evidenced by the
obtained Marginal similarity. the experiments conducted A
low Kolmogorov-Smirnov statistic (KS D = 0.044) for critical
features like H.period and a small distibution difference with
p-value =0.07. In addition, the t-SNE visualization showed
Relative Variation = 10.9% between real and synthetic clusters.

To address current limitations and enhance generative per-
formance, we propose the implementation of Temporal GANs:
Replace feedforward generators with LSTM or Transformer
blocks to model keystroke timing dependencies. We can also
test the Conditional Generation: Incorporate user ID as a latent
variable for user-specific synthesis (e.g., cGAN).
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