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Abstract—Parkinson’s disease (PD) is a chronic and progres-
sive neurodegenerative disorder that severely impacts motor
functions, including handwriting. Early and precise detection
is essential for timely intervention and effective treatment. In
this paper, we propose a novel hybrid approach that integrates
handcrafted and deep learning-based (DL) features extracted
from handwriting samples. By leveraging both feature types, our
method provides a more comprehensive analysis, enhancing the
accuracy and robustness of PD detection. Indeed, Handcrafted
features provide explicit, interpretable descriptors that capture
domain-specific patterns while DL features encode high-level
abstract representations. We first extracted DL features using
a fine-tuned transfer learning model based on ResNet50 and
combined them with a set of handcrafted features. Similarly,
DL features were obtained using a second fine-tuned transfer
learning model based on MobileNetV2, and the derived features
were integrated with the same handcrafted feature set for further
analysis. Afterward, a feature selection step is performed.The
conducted experiments exploiting a voting classifier, demonstrates
that the proposed hybrid approach achieve promising results
reaching an accuracy of 91.51%.

Index Terms—Parkinson disease, hybrid approach, hand-
crafted features, Deep features

I. INTRODUCTION

PD is a neurodegenerative disorder characterized by both
motor and non-motor symptoms [1]. The four primary motor
symptoms, most noticeable in individuals, include: tremors in
the hands, arms, legs, jaw, or head; stiffness in the limbs and
trunk; slowness of movement; and balance problems, which
can lead to falls [2]. In addition, non-motor symptoms, such as
depression, anxiety, sleep disorders, and cognitive impairment,
can significantly impact a patient’s emotional health and daily
activities [2]. Therefore, there is growing interest in developing
methods for the early detection of PD, as early treatment
appears to slow its progression. Moreover, recent treatments
have proven effective but largely limited to patients of younger
age [3].
Both slowness and rigidity in movement often occur in the
early stages of PD which significantly affects the handwriting
and sketching abilities. Thus, micrographia is used as an

early diagnostic tool for PD detection. While handwriting
is influenced by factors such as language proficiency and
education, sketching shapes like spirals and waves offers a
reliable, non-invasive measure for PD detection [4].
Traditional handwriting-based approaches are highly based on
clinical assessment and manual scoring, making them limited
in scalability.
Recent advances in artificial intelligence and machine learning
(ML) have effectively addressed this limitation by enabling the
automated extraction of meaningful features from handwriting
samples. Conventional ML-based methods rely on handcrafted
features such as contrast, correlation, and energy to analyze
handwriting abnormalities. These features offer interpretability
and computational efficiency, making them particularly useful
for small datasets. However, their limited ability to generalize
across diverse handwriting variations restricts their effective-
ness. Recently, DL has emerged as a powerful approach for PD
detection, capable of automatically extracting discriminative,
high-level features. These deep features effectively capture
complex handwriting abnormalities, improving classification
accuracy and enhancing generalization across different disease
stages. However, DL models particularly with small datasets,
can cause overfitting, which make them struggle to generalize
to new unseen data.
To tackle the challenges discussed previously, this research
aims to make significant contributions, which can be summa-
rized as follows:

• Combination of Handcrafted and DL Features: We inte-
grate handcrafted features, which capture critical statisti-
cal and structural aspects of handwriting images, with DL
features obtained through transfer learning using respec-
tively ResNet50 and MobileNetV2. This fusion optimizes
the strengths of both methods, enhancing classification
accuracy and generalization across various stages of PD.

• Feature Refinement: The generated feature vector is
refined by assessing the statistical relevance of each
feature, ensuring that only the most impactful information



influences the classification, leading to improved model
precision and efficiency.

• Voting Classifier for Improved Performance: We apply
a voting classifier to combine predictions from multiple
models, further enhancing classification accuracy, robust-
ness, and overall performance in detecting PD.

The rest of the article is organized as follows: Section II
reviews prior research in PD detection through handwriting
analysis. Section III outlines the suggested approach. Section
IV provides an overview of the experimental setup, presents
the results, and discusses the insights drawn from the ex-
perimental findings. Finally, Section V provides concluding
remarks and discusses potential future directions.

II. RELATED WORK

Advancements in ML have significantly improved PD de-
tection. Recent studies have explored various techniques, in-
cluding hybrid approaches and transfer learning, to enhance
diagnostic accuracy.

A. PD detection using hybrid based approaches

Hybrid-based methods for PD detection [5] [14] [9] com-
bine conventional features with DNN classification to enhance
accuracy. For example, [5] demonstrated the integration of
Histogram of Oriented Gradients (HOG) with Convolutional
Neural Networks (CNN), achieving an accuracy of 86.67%.
Similarly, [9] combined HOG features with CNN and LSTM,
resulting in an accuracy of 83.81%. In another approach, [14]
proposed the fusion of synthetic features with both CNN and
LSTM, reaching an accuracy of 87.66%. An overview of
hybrid-Based PD detection techniques is summarized int the
table I.

TABLE I
SUMMARY OF HYBRID-BASED PD DETECTION METHODS

References Year Method Dataset (spiral images) Performance

[5] 2025 HOG + CNN
data were gathered
from the study by
Zham et al. [6]

86.67%

[14] 2024 sythetic feature
+ CNN + LSTM spiral dataset 87.66%

[9] 2023 HOG + CNN
+ LSTM PD-WAVE DATASET 83.31%

These studies highlight the effectiveness of hybrid models
in improving PD detection by capturing both spatial and
temporal features. However, these models require significant
computational resources, which may hinder real-time use.
Moreover, the complexity of hybrid models increases the risk
of overfitting, and their performance depends on the quality
and size of the training data, making them less reliable with
limited or biased datasets.

B. PD detection using Transfer learning

Using transfer learning is an effective approach to reduce
overfitting, especially when working with limited training data.
This section will examine different PD detection methods that
leverage transfer learning. In [10], the study investigated the

use of the pre-trained VGG19 model as a feature extractor
for PD detection. To enhance model performance, additional
layers, including a Spatial Attention Layer, were incorporated,
allowing the model to focus more effectively on relevant
features. The softmax function was applied to enable more
nuanced decision-making. Similarly, in [11], the authors em-
ployed the InceptionV3 model for efficient PD detection. A
final dense output layer comprising two neurons with soft-
max activation is employed for binary classification between
healthy individuals and PD patients. In [13], the authors pro-
posed the use of DenseNet201 for feature extraction, followed
by a random forest classifier to perform PD detection. This
combination leveraged the strengths of transfer learning and
traditional machine learning techniques to improve accuracy
and robustness in PD diagnosis. An overview of the mentioned
hybrid-Based PD detection techniques is summarized in the
table II.

TABLE II
SUMMARY OF TRANSFER LEARNING-BASED PD DETECTION METHODS

References Year Exploited model Dataset (spiral images) Performance

[10] 2024 VGG19
Data were gathered
from the study by
[6]

90%

[11] 2024 InceptionV3 Data was created by
[22] 89%

[13] 2024 DenseNet201
Data were gathered
from the study by
[6]

86%

Transfer learning for PD detection provides key advantages,
such as high accuracy, reduced training time, and the ability
to work with smaller datasets. However, challenges include
reliance on high-quality pre-trained models, the need for
sufficient labeled data for fine-tuning, and the potential for
overfitting.

III. PROPOSED APPROACH

We propose in this work, a PD detection framework in-
tegrating transfer learning with feature fusion. Our approach
combines handcrafted features with deep features extracted
using ResNet50 and MobileNetV2 respectively. The resulting
features are then merged through a voting classifier to improve
detection accuracy. This hybrid model balances high perfor-
mance with computational efficiency, making it well-suited
for real-world applications. Fig. 1 illustrates the proposed
methodology.

A. Data Augmentation
Traditional image augmentation techniques remain highly

relevant in computer vision, as they offer a straightforward
and effective approach to expanding the size and diversity
of datasets. Additionally, their ease of implementation and
computational efficiency make them particularly advantageous
for real-time applications. In this study, we applied a diverse
set of transformation techniques, as outlined in Table III, to
ensure the robustness and enhance the generalizability of our
approach.



Fig. 1. Overview of the proposed approach.

TABLE III
APPLIED IMAGE AUGMENTATION TECHNIQUES AND THEIR

PARAMETERS

Transformation Value
Rotation range ±15° , ±20°
Width shift range 0.2
Height shift range 0.2
Shear range 0.1
Zoom range 0.2
Random Horizontal Flip 0.5
Random Vertical Flip 0.5

B. Feature extraction

1) Handcrafted feature extraction: Handcrafted features [7]
rely on well-defined mathematical formulations, allowing clin-
icians to understand and validate the model’s decision-making
process, which is crucial for trust in medical applications
[14]. Unlike DL models that require large datasets to avoid
overfitting, handcrafted features enable precise extraction even
with limited data, ensuring robustness and stability. In our
approach, we extract seven handcrafted features from hand-
writing images storing them alongside their corresponding
labels. These features are defined as follows:

• Contrast, which quantifies local intensity variations; cor-
relation, which measures pixel interdependence; energy,
assessing image uniformity and repetitive patterns.

• Homogeneity, evaluating the similarity of neighboring
pixels.

• Mean intensity, calculating the average pixel intensity.
• Standard deviation, indicating intensity dispersion around

the mean.
• Entropy, capturing the randomness in intensity distribu-

tion.
By integrating these handcrafted features with DL-based repre-

sentations, our framework enhances accuracy while maintain-
ing interpretability, making it highly suitable for PD detection.

2) Feature extraction based on DL models: DL models
can automatically identify complex patterns and features that
are difficult to capture through traditional methods [15]. Our
approach harnesses the power of advanced neural networks
like ResNet50 [16] and MobileNetV2 [17], which are highly
effective at extracting relevant features. We use transfer
learning with the selected pre-trained models (ResNet50 and
MobileNetV2) for PD detection. This approach leverages
knowledge from large datasets, eliminating the need to build a
model from scratch, and is well-suited for environments with
limited computational resources. Transfer learning accelerates
training and ensures high performance, even with smaller PD-
specific datasets.

3) ResNet50: is a deep residual network architecture that
incorporates 50 layers to perform complex image classification
tasks, such as detecting PD. It is based on a series of residual
blocks, which allow the model to learn complex patterns by
using skip connections to bypass certain layers. These skip
connections help prevent the vanishing gradient problem in
very deep networks, allowing the model to maintain efficient
training.
To summarize, we select ResNet50 for transfer learning due to
its deep residual architecture, which preserves feature integrity
during training, and its pre-trained weights from large datasets,
enabling effective feature extraction. By fine-tuning the model
on handwriting PD data, we adapt it to detect PD-specific
patterns while maintaining computational efficiency and high
accuracy.

4) MobileNetV2: is a highly efficient DL architecture de-
signed to offer a balance between performance and com-
putational efficiency. It introduces the concept of inverted
residuals, where depthwise separable convolutions are applied
after expanding the input features using lightweight expansion
layers. The linear bottleneck at the end of each block helps



to reduce the number of parameters while retaining essen-
tial features. By utilizing depthwise separable convolutions,
MobileNetV2 drastically reduces computational requirements
without sacrificing feature extraction quality. This makes it
ideal for tasks like Parkinson’s disease detection, where both
accuracy and computational efficiency are critical, especially
in resource-constrained environments.

C. Feature fusion

Feature fusion [18] [19] plays a vital role in improving
model accuracy and robustness by integrating diverse and
complementary features into a unified representation. In our
work, the integration of handcrafted and DL features into
a unified vector enables the model to leverage both expert
knowledge and automatically learned representations. Hand-
crafted features, derived from domain expertise, capture spe-
cific characteristics, while DL features learn complex patterns
and high-level abstractions from the data. By combining these
two types of features, the model benefits from a richer, more
comprehensive feature set, improving its ability to make ac-
curate predictions. This unified vector strengthens the model’s
performance, particularly in tasks like PD detection.

D. Feature selection

In our approach, we utilized Correlation-based Feature Se-
lection (CFS) [21] to select relevant features, which rely solely
on the inherent properties of the descriptors. This approach
ensures the selection of the most relevant features, enhancing
the model’s efficiency and accuracy. CFS is a filter algorithm
designed to rank feature subsets based on a heuristic evaluation
function that leverages correlation metrics [20]. The algorithm
prioritizes subsets where features exhibit strong correlations
with the target class while maintaining low correlations with
each other. Irrelevant features, which show weak correlations
with the class, are disregarded. Similarly, redundant features,
which are highly correlated with other features in the subset,
are excluded. A feature is selected based on its ability to
predict class labels in areas of the instance space not already
covered by other features. The evaluation function for CFS
is defined as: The Correlation-based Feature Selection (CFS)
formula is defined as:

MS =
krcf√

k + k(k − 1)rff
(1)

Where:
• MS is the merit of the feature subset.
• k is the number of features in the subset.
• rcf is the mean correlation between the features in the

subset and the class.
• rff is the average correlation between the features within

the subset.
CFS evaluates feature subsets by considering both their

correlation with the target class (rcf ) and the redundancy
among the features within the subset (rff ). The objective is
to identify feature subsets that are strongly correlated with the
class while being less redundant among themselves. A higher

MS value indicates a better feature subset in terms of both
relevance and uniqueness.

E. Classification

Our method employs a Voting Classifier that integrates
multiple ML models to improve classification accuracy and
robustness. This ensemble method combines predictions from
different classifiers, leveraging their individual strengths to
make a more reliable final decision. We integrate three diverse
models:

• Random Forest Classifier, which constructs multiple de-
cision trees and selects the majority vote.

• Logistic Regression Classifier, a linear model that esti-
mates class probabilities.

• Support Vector Machine (SVM), which finds the optimal
hyperplane to segregate classes effectively.

By combining these models, the Voting Classifier improves
predictive performance and generalization, making it particu-
larly effective for PD detection. A Voting Classifier combines
multiple models to make a final prediction. The decision can
be based on either hard voting or soft voting.

Hard Voting: The final prediction is determined by the
majority vote:

ŷ = mode{ŷ1, ŷ2, ..., ŷn} (2)

where ŷi is the prediction from classifier i, and mode
represents the most frequently predicted class.

Soft Voting: The ultimate prediction relies on the averaged
output probabilities of the models:

ŷ = argmax
c

n∑
i=1

wiPi(c) (3)

where Pi(c) is the predicted probability of class c from
classifier i, and wi is the weight assigned to each classifier.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides an overview of the conducted exper-
iments. Besides, it presents the exploited database, followed
by a discussion of the obtained results.

A. Conducted Experiments

In our experiments, we exploited the Spiral dataset, in-
corporating conventional data augmentation techniques, such
as random rotation, normalization and flipping along both
axes, to enhance generalization. The dataset was partitioned
into 80% for training and 20% for testing, ensuring a robust
evaluation framework. We implemented a Hybrid method
that combines DL and handcrafted features, using ResNet50
and MobileNetV2 for DL feature extraction. The model was
trained for 20 epochs using CrossEntropyLoss and Adam
optimizer (lr=0.0005, weight decay=1e-4). In addition, early
stopping was employed to improve training stability and
mitigate overfitting.

Feature selection was performed to retain the most in-
formative 150 features, reducing overfitting and improving



computational efficiency. For classification, we employed a
Voting Classifier, combining Random Forest, Logistic Regres-
sion, and SVM to leverage their complementary strengths.
Hyperparameter tuning was conducted using GridSearchCV,
while model evaluation was performed with StratifiedKFold
(n splits=5, shuffle=True, random state=42) to ensure a re-
liable and unbiased assessment. Finally, the best-performing
classifier was tested on the test set to determine its overall
effectiveness in real-world scenarios.

B. Dataset description

The exploited dataset is developed by [22]. It was gathered
from participants who were asked to draw spirals and waves
on paper, which were then digitized. People with Parkinson’s
disease often produce irregular and shaky patterns, whereas
healthy individuals tend to create smoother curves. The dataset
contains 204 images, equally split into two categories: 102
spiral drawings and 102 wave drawings. Each image is labeled
as either representing PD or Healthy. The images are divided
into two sets: 72 for training and 30 for testing in each
category. Fig. 2 illustrates a set of handwriting samples for
from both healthy individuals and PD patients.

Fig. 2. Example of handwriting samples for : (a) healthy and (b) PD patients.

C. Result and discussion

This section is dedicated to compare the performance of
MobileNetV2 and ResNet50 in PD detection using three key
evaluation metrics: accuracy curves, confusion matrices, and
loss curves. In Fig. 3 , MobileNetV2 misclassifies 24 instances
of class 0 and only 4 instances of class 1, whereas ResNet50
improves classification for class 0 (reducing misclassifications
to 18) but slightly increases errors in class 1 predictions (12
misclassified instances compared to 4 in MobileNetV2). This
suggests that ResNet50 achieves a better balance between
precision and recall.
In Fig. 4 MobileNetV2 reaches near-perfect training accuracy
quickly, but its validation accuracy fluctuates slightely, sug-
gesting potential instability in learning. In contrast, ResNet50
exhibits a more stable validation accuracy progression, indi-
cating better generalization.
Fig. 5 illustrates loss curves, showing that MobileNetV2

Fig. 3. Confusion matrices of the proposed hybrid model combining hand-
crafted features with: (a) MobileNetV2 , (b) ResNet50.

Fig. 4. Accuracy curves of the proposed hybrid model combining handcrafted
features with: (a) MobileNetV2 , (b) ResNet50.

experiences multiple spikes in validation loss, reflecting un-
stable learning, while ResNet50 stabilizes more quickly and
converges to a lower validation loss, indicating improved
robustness.

Fig. 5. Loss curves of the proposed hybrid model combining handcrafted
features with: (a) MobileNetV2 , (b) ResNet50.

Both MobileNetV2 and ResNet50 combined with hand crafted
features perform well in PD detection, but a detailed anal-
ysis of their accuracy curves, confusion matrices, and loss
curves highlights ResNet50’s superiority. ResNet50 outper-
forms MobileNetV2 by offering superior generalization, more
stable learning dynamics, and a more balanced classification
performance, making it perfect for real-world applications that
demand reliability and consistency.
According to Table IV, our proposed hybrid approach
achieves the highest accuracy, highlighting the advantage of
integrating handcrafted features with deep characteristics. No-
tably, MobileNetV2 DL features combined with handcrafted
features (91.51%) outperforms ResNet50 DL features inte-
grated with handcrafted features (90.90%).



TABLE IV
ASSESMENT OF THE PROPOSED APPROACH’S PERFORMANCE COMPARED

TO EXISTING STATE-OF-THE-ART EXISTING METHODS

Reference Method Accuracy
[5] HOG + CNN 86.67%

[9] HOG + CNN
+ LSTM 83.31%

[10] VGG19 90%
[11] InceptionV3 89%
[13] DenseNet201 86%

[14] sythetic feature
+ CNN + LSTM 87.66%

Proposed Hybrid
Approach

MobileNetv2
+ handcrafted features 91.51%

ResNet50
+ handcrafted features 90.90%

V. CONCLUSIONS

This paper introduces a robust hybrid framework for PD
detection using handwriting analysis, combining handcrafted
features with DL characteristics. The fusion of interpretable,
domain-specific descriptors and abstract, high-level DL fea-
tures enables a more comprehensive characterization of PD-
related motor impairments. Leveraging a voting classifier, the
proposed approach achieves a high classification accuracy of
91.51%, confirming its effectiveness. For future work, expand-
ing the dataset to include more diverse subjects and hand-
writing conditions could improve generalizability.Additionaly,
integrating additional modalities such as voice or gait data may
further boost diagnostic performance.
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