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Abstract— This work develops PF-4DGS, an novel framework
for 4D Gaussian splatting that addresses the challenges associ-
ated with the reliance on accurate prior knowledge of camera
poses in dynamic scene modeling. Our approach employs a
pose-free optimization strategy that simultaneously estimates
camera parameters and reconstructs the scene within a unified
framework. We introduce a stable initialization technique and
an efficient joint optimization loop that simultaneously improves
scene reconstruction and camera tracking. Comprehensive
evaluations on real-world datasets demonstrate that PF-4DGS
achieves accuracy comparable to leading methods, even without
prior camera pose information. This advancement marks a
huge breakthrough in Gaussian splatting and promotes the
application of this technique in dynamic environments.

Index Terms— 4D Gaussian Splatting, pose-free reconstruc-
tion, joint optimization, dynamic scenes, computer vision

I. INTRODUCTION

Novel view synthesis (NVS) represents a core challenge
in computer vision and graphics, emphasizing the creation
of photorealistic novel views of a scene from arbitrary,
previously unobserved viewpoints. Recent advancements in
scene representation [1], [2] and rendering techniques have
substantially enhanced the quality of NVS. The emergence
of Neural Radiance Fields (NeRF) [3] represented a trans-
formative landmark in the field, and it revolutionized NVS
by representing scenes as continuous neural volumetric func-
tions. The obvious strength of NeRF lies in its capacity to
implicitly encode scene properties through a neural network
that predicts color and density for any 3D location and
viewing angle. However, the computational demands of
NeRF and its extensions, combined with the necessity for
precise camera pose information, pose significant challenges
for real-time applications and dynamic scene reconstruction.

To mitigate the computational inefficiency inherent in
NeRF, recent research has explored alternative scene repre-
sentations. One promising approach is 3D Gaussian Splatting
(3DGS) [5], which substitutes the dense neural network with
spatially-distributed 3D Gaussian primitives. This represen-
tation models the scene as a series of continuous ellipsoidal
primitives, each parameterized by its position, orientation,
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Fig. 1. Our PF-4DGS framework achieves real-time performance, rendering
dynamic scenes at 42 frames per second (1352 × 1014 resolution) on the
Neu3D benchmark [4], while maintaining high visual fidelity.

size, and attributes such as color and opacity. 3DGS offers
notable improvements in speed and scalability, also facili-
tates real-time rendering and reconstruction. Despite those
merits, current 3DGS methods are predominantly tailored
for static scenes and require accurate prior camera poses for
initialization and optimization.

The extension of scene representations to dynamic envi-
ronments has attracted substantial research interest. Neural
Radiance Fields have been adapted for dynamic scenes
with techniques such as D-NeRF [6] and NSFF [7], which
incorporate temporal components into the volumetric repre-
sentation. Meanwhile, 3D Gaussian Splatting has evolved to
process dynamic scenes through the introduction of a tem-
poral dimension, leading to 4D Gaussian Splatting (4DGS)
[8]. This approach models dynamic scenes as collections
of Gaussians that evolve in both space and time, allowing
high-fidelity reconstruction and rendering of spatiotemporal
phenomena. Although 4DGS demonstrates great potential, its
reliance on accurate camera calibration restricts the deploy-
ment in uncontrolled environments where obtaining reliable
pose information remains challenging.

In this work, we introduce a creative approach for pose-
free 4D Gaussian Splatting to bridge the above mentioned
research gaps. In contrast with existing approaches, our
method eliminates the dependency on predefined camera
poses through the simultaneous optimizing the scene repre-
sentation and camera parameters. Specifically, we integrate
a robust initialization strategy and an efficient optimization



Fig. 2. The framework of PF-4DGS approach.

scheme that refines both the 4D Gaussian representation and
the camera poses iteratively. This joint optimization frame-
work effectively manages unconstrained dynamic scenes,
achieving high-quality novel view synthesis without neces-
sitating pose information. Overall, PF-4DGS shows a sig-
nificant step forward for 4D scene reconstruction, removing
the critical pose dependency barrier and making high-fidelity
dynamic modeling feasible in real-world settings. Figure 1
presents a visual demonstration of PF-4DGS. The principal
contributions are threefold:

• We propose PF-4DGS, a pose-free framework for 4D
Gaussian Splatting that facilitates dynamic scene recon-
struction without pre-registered camera poses.

• A robust initialization strategy and a joint optimization
scheme that concurrently refines the scene representation
and camera parameters are proposed.

• We conduct comprehensive evaluations on multiple real-
world benchmarks to validate our method under diverse
conditions, which turns out to show highly competitive
performance in comparison to SOTA techniques.

The subsequent sections are structured as: Section II
reviews related works in dynamic scene reconstruction and
pose estimation. Section III explains the pose-free 4D Gaus-
sian splatting framework for dynamic scene reconstruction.
Section IV evaluates our method through experiments on
real-world scenarios and highlights its superior performance
over several benchmarks. Eventually, Section V concludes
our work and proposes potential future study trends.

II. RELATED WORKS

Reconstruction of dynamic scenes and NVS are vibrant
domains in graphics and computer vision. This section re-
views recent advances in scene representation, camera pose
estimation, and pose-free optimization frameworks, empha-
sizing methods that are most relevant to our approach.

A. Scene Representation for Novel View Synthesis

Effective scene representation is pivotal in NVS. NeRF
[3] pioneered the utilization of neural networks to model
scenes as continuous volumetric functions, leading to high
quality static scenes. However, the computational inefficiency
of NeRF and its dependence on dense sampling have spurred
the development of alternative representations. Structured-
NeRF [9] employs a hierarchical scene graph representation
to encode both geometric properties and semantic attributes
of objects, enabling enhanced scene comprehension that
significantly improves NVS performance. Approaches such
as PlenOctrees [10] and Instant-NGP [11] enhance NeRF’s
performance by employing spatial data structures like octrees
and hash grids, thus allowing real-time rendering. For dy-
namic scenes, extensions such as D-NeRF [6] and TiNeuVox
[12] adapt NeRF to model temporal variations.

A more recent and promising alternative is 3DGS [5],
which represents scenes as collections of ellipsoidal Gaus-
sians. This representation offers a continuous and efficient
framework that supports real-time rendering. Building on



this concept, 4D Gaussian Splatting (4DGS) extends the
model to dynamic scenes by integrating a temporal dimen-
sion. Although these methods demonstrate impressive results,
they are heavily dependent on accurate camera pose, which
severely limits their applicability in real-world settings where
reliable pose data is often inaccessible.

B. Camera Pose Estimation

Precise estimation of camera pose is essential for scene
reconstruction. Conventional approaches including Structure-
from-Motion (SfM) [13] and Simultaneous Localization and
Mapping (SLAM) [14] estimate camera poses by establishing
correspondences across multiple views. Recently, COLMAP
[13] provides robust pipelines for static scenes, however, its
effectiveness in dynamic environments remains limited.

Additionally, learning-based approaches have emerged for
pose estimation. Techniques such as Superglue [15] and
NerfingMVS [16] leverage deep learning to infer camera
poses directly from images, which improves robustness in
challenging conditions. However, these methods still require
substantial training data or strong priors, restricting their
applicability in dynamic and unconstrained settings.

C. Pose-Free Reconstruction Frameworks

Recently, pose-free or joint optimization frameworks have
been proposed to eliminate the reliance on predefined camera
poses. For instance, BARF [17] introduces a bundle-adjusting
NeRF that optimizes both camera poses and scene represen-
tation simultaneously. Similarly, iNeRF [18] inverts NeRF to
estimate poses, facilitating pose-free reconstruction in static
contexts. More recent works including NoPe-NeRF [19] and
NeRF−−zhe [20], extend the framework to dynamic scenes.
Despite their potential, these methods are often computation-
ally expensive and require strong initialization.

In summary, while recent advances have substantially im-
proved scene representation and pose estimation techniques,
current methods remain fundamentally limited—either re-
stricted to static environments or critically dependent on
accurate camera pose information.

III. PRELIMINARY AND FRAMEWORK

In this section, we propose the PF-4DGS algorithm with
mathematical formulation presented in a step-by-step man-
ner. Our method initiates from the initialization of 3D Gaus-
sians and camera poses, then performs a joint optimization of
Gaussian and pose parameters, rendering, and involves the
computation of loss functions. The comprehensive frame-
work is depicted in Figure 2, and the detailed technical
procedures are presented in Algorithm 1.

Given a group of unposed images, we leverage the
DUSt3R [21] method from to obtain initial estimates of the
camera poses and corresponding depth images. Following
the initialization step, we derive the 3D Gaussian points.
These Gaussian points are then projected using the estimated
camera poses. Using a differential rasterizer, we generate
the rendered images. Subsequently, we jointly optimize the

rendered images (Lrender), the estimated camera poses (Lpose),
and the Gaussian parameters (Lgaussian) in an iteratively
manner, which aims to reconstruct the dynamic scene and
generate novel views. The detailed steps are stated below.

A. Step 1: Input and Initialization

The input of the algorithm consists of a set of images
{Ik}Kk=1 sampled from dataset D, which are captured from
different viewpoints with unknown camera poses.

Gaussian Initialization. We initialize a set of N 3D
Gaussian variables G0 = G = {Gi}Ni=1, where each variable
Gi is parameterized in the following manner:

Gi = {µi,Σi, ci, αi}, (1)

where µi ∈ R3 is the mean position of the Gaussian variable,
Σi ∈ R3×3 is the covariance matrix that controls shape and
orientation; ci ∈ R3 is the color frame (e.g., RGB) and αi ∈
[0, 1] is the opacity degree of the image.

Pose Initialization. Then the initial camera poses P0 =
{(Rk, tk)}Kk=1 are estimated such that:

Rk ∈ SO(3), tk ∈ R3. (2)

where we leverage DUSt3R [21] from to complete these
steps and generate the related depth images simultaneously.

B. Step 2: Joint Optimization

2.1 Camera Projection: The 3D-to-2D projection of
each Gaussian primitive Gi onto the k-th camera plane is
computed through the following transformation:

µproj
i = K · (Rk · µi + tk), (3)

where K ∈ R3×3 is the camera intrinsic matrix, and µproj
i ∈

R2 is the projected 2D position of the Gaussian center.
The covariance matrix of the projected Gaussian is:

Σproj
i = Jk · Σi · J⊤

k , (4)

where Jk is the Jacobian of the projection function with
respect to the Gaussian parameters.

2.2 Rendering. The rendered color at pixel p in the k-th
image is computed by aggregating contributions of all Gi:

Ik(p) =

N∑
i=1

αi · N (p | µproj
i ,Σproj

i ) · ci, (5)

where N (p | µproj
i ,Σproj

i ) is the Gaussian kernel value at
pixel p, and αi · ci is the weighted color contribution of Gi.

C. Step 3: Loss Computation

3.1 Compute Photometric Loss. A photometric loss
between rendered images and input images is computed to
guide the optimization procedure of the next step:

Lrender =

K∑
k=1

∑
p∈Pk

∥Ik(p)− I target
k (p)∥2, (6)

where Pk is the set of all pixels in the k-th image and I target
k

is the ground-truth image for the k-th view.



3.2 Compute Pose Regularization Loss. To ensure stable
optimization of camera poses, a regularization term is added:

Lpose = λpose

K∑
k=1

∥R⊤
k Rk − I∥+ ∥tk∥2, (7)

where λpose is the weight for the pose regularization term,
and I is the identity matrix to constrain Rk ∈ SO(3).

3.3 Compute Regularization Loss. The Gaussian param-
eters are regularized for a compact scene representation:

Lgaussian = λgaussian

N∑
i=1

∥Σi∥2F , (8)

where ∥Σi∥2F is the Frobenius norm of the covariance matrix,
and λgaussian is the regularization weight.

D. Step 4: Optimization Objective

The final optimization objective combines all loss terms:

L = Lrender + Lpose + Lgaussian. (9)

The optimization procedure jointly updates:
• Gaussian parameters G = {µi,Σi, ci, αi}Ni=1.
• Camera poses {(Rk, tk)}Kk=1.

E. Step 5: Output

The output of the optimization process includes:
• Optimal 4D Gaussian representation: a set of Gaussians
G∗ representing the spatiotemporal structure of the scene.

• Refined camera poses: Accurate camera poses P∗ =
{(Rk, tk)}Kk=1 for all input views.

These outputs facilitate high-quality NVS and dynamic scene
reconstruction, which are reflected in the experiment section.

Algorithm 1: PF-4DGS for Dynamic Scene Recon-
struction

Input: Dataset D, initial Gaussians G0, initial poses
P0, learning rate α, maximum iterations T

Output: Optimal Gaussians G∗ and poses P∗

1 Initialize parameters: G ← G0, P ← P0;
2 for t = 1, 2, . . . , T do
3 Compute photometric loss Lrender;
4 Compute pose regularization loss Lpose;
5 Compute gaussian regularization loss Lgaussian;
6 Compute total loss:

L ← Lrender + Lpose + Lgaussian;
7 Compute gradients:

• ∇GL (gradient w.r.t. Gaussian parameters)
• ∇PL (gradient w.r.t. poses)

Update parameters using gradient descent:
• G ← G − α∇GL
• P ← P − α∇PL

if stopping criterion (e.g., ∥∇L∥ < ϵ) is met then
break;

8 return Optimal parameters G∗ and P∗;

IV. EXPERIMENTS

A. Platforms and Datasets

We implemented our proposed methods on a single
NVIDIA GeForce RTX 3090, utilizing PyTorch as the exper-
imental environment. Considering the practical requirements,
we employed real-world datasets of HyperNeRF [22] and
Neu3D [4]. The configuration settings for these datasets
were informed by the foundational work on 4DGS [8].
The selected datasets enable a thorough evaluation of our
methods’ performance in practical scenarios.

B. Evaluation Metrics

The evaluation metrics employed in our experiments in-
clude the multiscale structural similarity index (MS-SSIM),
peak signal-to-noise ratio (PSNR), the structural dissimilarity
index measure (D-SSIM), the learned perceptual image patch
similarity (LPIPS), training times, storage requirements and
frames per second (FPS). These metrics provide a compre-
hensive assessment of our PF-4DGS method.

C. Results

Tables I and II include the quantitative experimental results
for the HyperNeRF and Neu3D datasets, respectively. The
best and second best results are indicated in green and
blue, separately. Note that the rendering convergence speed
is influenced by image resolution. For a more consistent
comparison, we standardized the resolution to 960×540 and
1352× 1014 for the respective datasets.

The numbers in both tables quantify the performance by
different methods. Evidently, some NeRF-based methods,
namely NeRFPlayer [23], HyperReel [24], and HexPlane-
all [25], converge in an unexpectedly slow speed, even
after several hours. Additionally, certain grid-based NeRF
methods struggle to render objects with intricate details,
such as TiNeuVox-B [12], HexPlane-all [25], KPlanes [26],
and MSTH [27]. Through certain benchmarks demonstrate
promising results in specific evaluation metrics, such as
MSTH [27] converging faster than PF-4DGS on the Neu3D
dataset and 3D-GS [5] achieving higher FPS on the same
dataset, their overall performance is inferior in other metrics.

Figure 3 illustrates the effects of various benchmarks
on the HyperNeRF dataset, with tested objects including a
broom, banana, chicken, and 3D printer. The related pictures
obviously indicate that static 3D-GS [5] struggles with dy-
namic scene reconstruction. Among the methods evaluated,
both 4DGS [8] and our proposed approach demonstrate
superior results. Notably, upon closer inspection of the broom
and chicken targets, the rendered images of the slipper,
corner, and sleeve exhibit enhanced clarity using our method.

D. Limitations and Improvements

Although PF-4DGS demonstrates promising results, sev-
eral limitations have been identified. Firstly, the model
struggles with occlusions and fast-moving objects, causing
artifacts or inaccuracies in reconstructed scenes. We will
integrate optical flow for improving the model’s robustness.
For example, optical flow may initialize or regularize the



TABLE I
COMPARABLE RESULTS ARE REPORTED ON THE HYPERNERF DATASET.

Model PSNR(dB) MS-SSIM Times FPS Storage(MB)
Nerfies [28] 22.1 0.804 ∼hours <1 -

HyperNeRF [22] 22.3 0.824 31.5 hours <1 -
TiNeuVox-B [12] 24.5 0.841 31 mins 1 49

3D-GS [5] 19.8 0.684 41 mins 55 51
FFDNeRF [29] 24.2 0.842 - 0.05 440

4DGS [8] 25.2 0.845 1 hours 34 61
Ours 25.8 0.853 28 mins 50 45

TABLE II
COMPARABLE RESULTS ON NEU3D DATASET. HERE, THE SCENE RESOLUTION IS LIMITED TO 1352 X 1014.

Model PSNR(dB) D-SSIM LPIPS Time FPS Storage(MB)
NeRFPlayer [23] 30.68 0.035 0.110 6 hours 0.045 -

HyperReel [24] 31.11 0.034 0.099 9 hours 2.0 358
Hexplane-all [25] 31.68 0.015 0.074 12 hours 0.2 251

KPlanes [26] 31.65 - - 1.9 hours 0.3 307
Im4D [30] 32.55 - 0.209 29 mins ∼5 94
MSTH [27] 32.39 0.015 0.057 20 mins 2.0 137
4DGS [8] 31.15 0.016 0.049 40 mins 30 90

Ours 32.64 0.013 0.036 26 mins 42 86

Fig. 3. Comparable visualized results that different methods obtained in HyperNeRF datasets.

Gaussian updates, ensuring smoother transitions and better
handling of motion blur or occlusions.

Additionally, performance tends to degrade when input
data is sparse or of low resolution, as the model relies
heavily on adequate viewpoint coverage and spatial detail.
To mitigate the effects of sparse inputs, regularization tech-

niques, such as Gaussian and pose regularization terms, are
essential for stabilizing the optimization process. Techniques
like view synthesis and multi-view consistency can also be
employed to extrapolate missing information from existing
views. For low-resolution inputs, integrating super-resolution
techniques to up-sample images prior to processing may



improve the model’s competence to capture fine details.
Alternatively, hierarchical optimization strategies, such as
coarse-to-fine Gaussian updates, can refine scene represen-
tations even when working with low-resolution data. While
the attention mechanism used in our model is not inherently
interpretable, visualization techniques like saliency maps can
provide insights into its decision-making process.

Finally, model compression techniques such as quanti-
zation and pruning facilitate deployment on edge devices,
although careful tuning is necessary to maintain accuracy. In
summary, experimental results demonstrate the applicability
of PF-4DGS across various scenarios. Improved computa-
tional efficiency would further adapt it to real-time systems.

V. CONCLUSIONS

In this paper, we proposed PF-4DGS, an advanced pose-
free 4DGS framework tailored for dynamic scene recon-
struction as well as novel view synthesis. Our approach
effectively eliminates the need for precomputed camera
poses, jointly optimizing Gaussian parameters and pose
estimation, which results in high-quality reconstructions and
robust performance across a variety of scenarios, all while
maintaining fast convergence speeds. Various experiments
on the HyPerNeRF and Neu3D datasets indicate that PF-
4DGS transcends existing benchmarks in the field of accu-
racy, rendering quality, and computational efficiency. Since
it is still challenging to achieve excellent performance in
scenes containing occlusions and fast-moving objects, we
will extend our framework to process such scenarios and
develop more compact and robust methods.
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