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Abstract—This study introduces the HBV-DS dataset, a novel
clinical resource designed for predicting hepatic fibrosis and
necroinflammatory activity in patients with Hepatitis B Virus
(HBV). The dataset is unique as it comprises the same pa-
tient instances annotated with multiple classification schemes,
allowing for a comprehensive analysis of liver conditions. We
implemented a robust end-to-end machine learning (ML) pipeline
that includes essential preprocessing steps such as data cleaning,
normalization, and encoding, alongside class balancing using the
Synthetic Minority Oversampling Technique (SMOTE). This ap-
proach effectively addresses class imbalance, which is critical for
enhancing model performance in clinical settings. Our evaluation
involved six different classifiers: Support Vector Machine (SVM),
Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), De-
cision Tree, Random Forest, and XGBoost. Notably, the Random
Forest classifier achieved an impressive accuracy of 92% and an
AUC of 0.98, demonstrating the dataset’s effectiveness in clinical
prediction tasks. The findings highlight the significant impact
of dataset-specific labeling on predictive outcomes and establish
benchmark metrics for future research in HBV progression
modeling. This work not only underscores the importance of
preprocessing and model selection in medical machine learning
applications but also provides actionable insights for integrating
these models into clinical decision support systems.

Index Terms—Hepatitis B, fibrosis, activity, machine learning,
SMOTE, feature selection, medical data preprocessing.

I. INTRODUCTION

HBV remains a major global health challenge, affecting ap-
proximately 296 million people and significantly contributing
to liver-related morbidity and mortality [1]. An accurate liver
fibrosis and viral activity assessment guides clinical decisions
and optimizes patient management. However, conventional
diagnostic methods, such as liver biopsy, are invasive, costly,
and not widely accessible. Noninvasive approaches, including
serum biomarkers and elastography, have been developed, but

their accuracy remains suboptimal [2]. Artificial intelligence
(AI) and machine learning (ML) have emerged as powerful
tools for analyzing complex biomedical data and predicting
disease progression [3]. In the context of HBV, supervised
learning models have been explored to estimate liver fibrosis
progression. However, their performance critically depends on
three key factors: (1) the quality and representativeness of the
dataset, (2) the discriminative power of the selected clinical
and biological features, and (3) the robustness of the chosen
model in capturing underlying patterns. To address these
challenges, we propose a rigorously curated dataset paired
with an optimized ML framework to improve the accuracy
and generalizability of HBV fibrosis prediction. This paper
presents a comprehensive machine learning framework for
predicting liver fibrosis and HBV activity using one of the
four distinct clinical datasets. Each dataset is targeting specific
diagnostic categorizations: (1) significant liver lesions (BD-
Lesion), (2) hepatic activity (BD-Activity), (3) fibrosis staging
(BD-Fibrose), and (4) combined fibrosis-activity assessment
(HBV-DS). Our supervised learning approach combines rigor-
ous feature selection with advanced classification models, opti-
mized through stratified cross-validation techniques to ensure
clinical relevance. The study makes three key contributions:
First, we demonstrate how dataset-specific labeling impacts
predictive performance across six machine learning classifiers.
Second, we establish benchmark metrics (precision, sensitivity,
specificity, and AUC-ROC) for each diagnostic task. Third,
we provide actionable insights for integrating these models
into clinical decision support systems. This paper is structured
as follows: Section II presents a review of existing methods
for predicting fibrosis and HBV activity. Section III describes



the proposed methodology, including data description, data
selection, pre-processing, and model implementation. Section
IV presents the experimental results and their interpretation,
followed by a discussion of clinical implications and potential
improvements in Section V. Finally, Section VI concludes with
a summary of contributions and future research directions.

II. RELATED WORK

Non-invasive assessment of liver fibrosis in chronic hepatitis
B (CHB) has evolved significantly over the past decade. The
gold standard liver biopsy presents inherent limitations, includ-
ing sampling error, invasiveness, and complications, driving
research toward alternative diagnostic approaches. Marcellin et
al. [8] initially validated transient elastography for fibrosis as-
sessment in CHB patients, demonstrating AUROCs of 0.81 and
0.93 for significant fibrosis and cirrhosis, respectively. Serum
biomarker panels emerged concurrently, with Poynard et al. [9]
developing FibroTest-ActiTest, achieving sensitivities of 70-
86% for significant fibrosis detection. Despite these advances,
these singular approaches showed limitations, particularly in
intermediate fibrosis stages [10]. Recently, machine learning
has transformed this landscape considerably. Jiang et al. [11]
developed both nomogram and random forest models for CHB
patients that achieved remarkable discrimination for significant
fibrosis (AUROCs of 0.891 and 0.906, respectively) using
only routine clinical variables. Anteby et al. [12] conducted a
comprehensive systematic review of deep learning applications
for fibrosis classification, identifying consistent superiority
of AI techniques over conventional methods across multiple
studies. Integration of multimodal data has further improved
diagnostic performance, as demonstrated by Wang et al. [13],
who combined radiomics features from MRI with clinical
parameters through deep learning architectures. Despite these
technological advances, Zhang et al. [14] identified persistent
challenges in model generalization across diverse populations,
emphasizing the need for external validation and population-
specific calibration. The combined approach utilizing sequen-
tial algorithms of serum markers and elastography, as validated
by Liu et al. [15], currently represents the most robust clinical
strategy for non-invasive fibrosis assessment in CHB. Kim
et al. [16] further refined machine learning applications by
identifying novel biomarker combinations with improved prog-
nostic value beyond fibrosis staging alone. While these recent
advances in non-invasive fibrosis assessment and machine
learning applications for chronic hepatitis B (CHB) have
shown promising outcomes, these existing approaches often
focus on either fibrosis or inflammatory activity in isolation.
This limitation highlights the need for standardized, repro-
ducible pipelines that are adapted to structured, multi-label
clinical datasets. Moreover, few studies adequately address the
challenges of data imbalance and the necessity for population-
specific validation. In response to these limitations, our work
introduces an integrated and reproducible end-to-end machine
learning (ML) framework tailored to a curated HBV dataset.
This framework targets the simultaneous prediction of fibrosis
stage and inflammatory activity, thereby filling a critical gap

in the current research landscape. By supporting clinically rel-
evant, population-specific modeling in HBV management, our
contribution aims to enhance the accuracy and applicability of
predictive models in real-world clinical settings. This approach
not only improves diagnostic capabilities but also aligns with
the ongoing efforts to refine non-invasive assessment methods
for liver conditions associated with HBV.

III. METHODS

A. Dataset Description

This clinical dataset is derived from a retrospective inves-
tigation conducted at Farhat Hached University Hospital in
Sousse, Tunisia. The collection comprises carefully curated
medical records from 69 patients diagnosed with chronic
hepatitis B (CHB). All cases met stringent diagnostic criteria
for CHB and were selected based on complete clinical and
biological data availability. The dataset’s particular strength
lies in its dual annotation system, supporting both binary
classification (e.g., significant hepatic lesions) and multi-class
staging (e.g., METAVIR fibrosis scoring) derived from a single
patient group. A total of 30 features were collected for each
patient, encompassing demographic, clinical, biochemical, and
histological data. The full list of features is presented in
Table I. Hepatitis B infection was confirmed through standard
serological testing. The staging of liver fibrosis and grading
of necroinflammatory activity were determined by histolog-
ical examination of liver biopsy samples, using established
scoring systems such as METAVIR. Evaluating the severity
of fibrosis and activity is clinically crucial, as therapeutic de-
cisions—particularly the initiation of antiviral treatment—are
guided by these parameters. According to clinical guidelines,
treatment is typically indicated only in cases of significant
hepatic lesions, defined as an activity grade of A2 or higher
and/or a fibrosis stage of F2 or higher. We have derived
four specialized datasets from the original clinical records,
each designed for distinct classification tasks. For the present
analysis, we focus exclusively on the fourth dataset (HBV-DS),
which enables four-class classification based on the combined
clinical significance of fibrosis stages and necroinflammatory
activity levels, as detailed in Table II. This curated dataset
provides the most comprehensive representation of disease
progression, aligning with standard histopathological grading
systems while optimizing predictive performance for clinical
decision-making.

B. End-to-end ML framework

The proposed methodology for predicting fibrosis and
necroinflammatory activity in chronic hepatitis B follows a
multi-step machine learning pipeline, as illustrated in Figure 1.
Our pipeline begins with data preprocessing, handling missing
values, encoding categorical variables, normalizing features,
and balancing class distributions. Next, feature selection em-
ploys three methods: RFE-CV, SelectKBest, and Inf-FS, to
identify optimal feature subsets. Six classifiers (MLP, SVM,
KNN, XGBoost, Decision Tree, and Random Forest) are then
trained and evaluated using both full and reduced feature



TABLE I
DESCRIPTION OF THE DATASET FEATURES

Feature Name Description Type
Age Patient’s age (in years) Continuous

Gender Male or Female Categorical
Weight Weight in kilograms Continuous
Height Height in centimeters Continuous
BMI Body Mass Index Continuous
ALT Alanine transaminase Continuous
AST Aspartate transaminase Continuous

Platelets Platelet count (109/L) Continuous
Prothrombin Rate Coagulation profile (%) Continuous

INR International Normalized Ratio (blood-clotting test) Continuous
Albumin Serum albumin level Continuous

Total Bilirubin Total bilirubin in blood Continuous
Direct Bilirubin Direct bilirubin level Continuous

ALP Alkaline phosphatase Continuous
GGT Gamma-glutamyl transferase Continuous

HBV DNA Viral load (copies/mL) Continuous
HBeAg Hepatitis B e-antigen Binary

Anti-HBe Anti-HBe antibody status Binary
Diabetes Mellitus Presence of diabetes Binary

Hypertension Presence of hypertension Binary
Alcohol Use Alcohol consumption Categorical

Smoking Smoking status Categorical
Family History Family history of liver disease Binary

Previous Treatment Antiviral treatment history Binary
Liver Stiffness From elastography or biopsy Continuous

Biopsy Performed Whether a biopsy was done Binary
Fibrosis Score METAVIR F0–F4 score Ordinal / Binary
Activity Score METAVIR A0–A3 grade Ordinal / Binary
Diagnosis Date Date of diagnosis Date

Follow-up Period Duration of monitoring Continuous

TABLE II
MULTI-CLASS CLASSIFICATION OF LIVER ACTIVITIES AND FIBROSIS

Classe Signification
0 Non-significant activity and fibrosis
1 Significant activity and non-significant fibrosis
2 Significant activity and fibrosis
3 Significant activity and advanced fibrosis

sets. Performance is assessed via metrics (accuracy, precision,
recall, F1-score, and AUC) to compare model effectiveness in
predicting HBV fibrosis and activity stages.

C. Data Preprocessing

The HBV-DS dataset presented specific modeling chal-
lenges, including missing values and class imbalance. Without
proper handling, these issues could compromise model accu-
racy, fairness, and generalization. Our preprocessing pipeline
addressed these limitations by transforming raw clinical data
into a machine-learning-ready format while preserving data
integrity. Key steps included missing value imputation, cat-
egorical encoding, feature normalization, and SMOTE-based
class balancing. Each component is detailed in subsequent
sections.

1) Missing data imputation:
• Imputation of Missing Numerical Values

To handle missing values in the numerical variables of the
HBV-DS dataset, we experimented with three distinct impu-
tation techniques. These included mean imputation, median

imputation [4], [5], and the K-Nearest Neighbors (KNN)
imputation method. Each approach was evaluated for its ability
to preserve the underlying data distribution and minimize
distortion before training the predictive models.

• Imputation of Missing Categorical Values
For categorical variables, a different strategy was employed
to address missing values. Specifically, we applied mode
imputation, replacing missing entries with the most frequently
occurring value for each variable. This approach is particularly
suitable for categorical data, where the most common category
often provides a reliable estimate that reflects the overall
distribution.

2) Encoding of Categorical Variables: We used label en-
coding (ordinal encoding) to convert categorical variables into
a numerical format. This method assigns ascending integer
values to each unique category, then replaces the original
categorical values with these numerical labels, maintaining the
variable’s categorical meaning in a machine-readable form.

3) Data Normalization: We applied standardization (z-
score normalization) to address scale variations among fea-
tures. This critical preprocessing step transforms each feature
to have a mean of 0 and a standard deviation of 1, preventing
variables with larger ranges from dominating the model’s
learning process.

4) Synthetic Minority Over-sampling Technique (SMOTE):
During our analysis, we observed that the HBV-DS dataset
suffers from class imbalance, with certain categories being
significantly underrepresented. Specifically, 50.24% of the



Fig. 1. Flowchart of the proposed solution

data belong to Class 0 (non-significant activity and fibrosis),
21.74% to Class 1 (significant activity with non-significant
fibrosis), 13.04% to Class 2 (significant activity and significant
fibrosis), and only 5.8% to Class 3 (significant activity with
advanced fibrosis). This imbalance poses a serious challenge,
as machine learning models tend to favor the majority classes,
leading to poor classification performance on minority classes.
To address this issue, we adopted SMOTE (Synthetic Minority
Over-sampling Technique), a widely used and effective re-
sampling method introduced in 2002 [6]. Rather than simply
duplicating existing minority instances, SMOTE generates
synthetic samples by interpolating between selected instances
and their nearest neighbors within the same class. This ap-
proach helps balance the class distribution and enhances the
model’s ability to learn from underrepresented categories.
Following Yağanoğlu’s [7] successful SMOTE application in
hepatitis C research, we implemented this technique for our
hepatitis B dataset to address class imbalance. This advanced
resampling approach enhanced model fairness, accuracy, and

stability, crucial requirements for clinical prediction tasks.

D. Feature Selection

Feature selection is a critical step in the ML framework,
aiming to identify and retain the most informative variables
for the prediction task. By eliminating redundant, irrelevant, or
noisy features, this step not only enhances model performance
but also reduces computational complexity, leading to better
generalization on unseen data. In the context of this study, we
sought to determine which clinical and biological variables are
most relevant for predicting fibrosis stage and hepatic activity
in patients with chronic hepatitis B. To that end, we evaluated
and compared three feature selection techniques:

• Recursive Feature Elimination with Cross-Validation
(RFE-CV),

• SelectKBest, which selects features based on univariate
statistical tests,

• Infinite Feature Selection (Inf-FS), a graph-based ranking
algorithm.



These methods were applied to the HBV-DS dataset to isolate
the most predictive features, to improve the model’s inter-
pretability and diagnostic performance in a clinical context.

E. Machine Learning Models

In this study, we implemented and compared several super-
vised Machine Learning models to classify patients based on
the severity of hepatic fibrosis and necroinflammatory activity.
The models were chosen for their widespread use in medical
data analysis and their diversity in learning approaches. The
configurations are summarized below:

1) K-Nearest Neighbors (KNN): We employed this
distance-based, non-parametric algorithm, which classifies pa-
tients by comparing each new instance to its K closest neigh-
bors in the training data (using Euclidean distance). Model
performance was evaluated across K values ranging from 3 to
15.

2) Support Vector Machine (SVM): We implemented this
margin-maximizing algorithm using both linear and non-linear
kernels (including RBF). The hyperparameters such as the
regularization, and gamma, were optimized via grid search
to balance model complexity and generalization for fibro-
sis/activity classification.

3) Multilayer Perceptron (MLP): MLP is a class of feedfor-
ward artificial neural networks that has become fundamental
for solving complex classification problems. In this study,
we implemented an MLP with the following architecture:
a single hidden layer containing 100 neurons, using ReLU
activation functions and the Adam optimizer. The model was
trained for a maximum of 200 epochs with early stopping
enabled to prevent overfitting. This configuration provided an
optimal balance between model complexity and computational
efficiency for our clinical classification task of hepatic fibrosis
and inflammatory activity, while ensuring reproducible results
through controlled randomization.

4) Decision Tree (DT): DT represents a powerful super-
vised learning model particularly effective for solving classifi-
cation problems. Its fundamental principle relies on a tree-like
structure, where each leaf node corresponds to a class label,
while internal nodes represent decision rules derived from
data features. This architecture offers inherent interpretability,
allowing for transparent decision processes through sequential
feature evaluations that culminate in classification outcomes.

5) Random Forest (RF): Random Forest is an ensemble
learning method that operates by constructing multiple deci-
sion trees during training and outputting the mode (classifica-
tion) or mean (regression) of their predictions. For our study,
we implemented a Random Forest classifier composed of 100
decision trees, leveraging their collective decision-making to
improve prediction accuracy and robustness while naturally
handling overfitting through built-in feature randomness and
bootstrap aggregation. This configuration provided optimal
performance for our hepatic fibrosis classification task.

6) XGBoost: XGBoost (eXtreme Gradient Boosting) is
a powerful and efficient implementation of gradient boost-
ing tailored for supervised learning tasks. It builds decision

TABLE III
PERFORMANCE COMPARISON OF IMPUTATION METHODS ACROSS

MODELS

Imputation Method Metric MLP KNN SVM RF DT XGB
Numeric: Mean Accuracy 0.60 0.63 0.63 0.63 0.69 0.72
Categorical: Mode Precision 0.50 0.50 0.42 0.30 0.54 0.57

Recall 0.40 0.32 0.36 0.40 0.39 0.45
F1-Score 0.45 0.40 0.30 0.30 0.39 0.50

Numeric: Median Accuracy 0.63 0.63 0.63 0.63 0.67 0.69
Categorical: Mode Precision 0.55 0.53 0.40 0.45 0.50 0.45

Recall 0.45 0.40 0.40 0.45 0.50 0.40
F1-Score 0.40 0.42 0.35 0.25 0.40 0.25

Numeric: KNN (k=9) Accuracy 0.74 0.63 0.50 0.63 0.67 0.71
Categorical: Mode Precision 0.60 0.53 0.50 0.45 0.50 0.55

Recall 0.55 0.46 0.45 0.45 0.50 0.60
F1-Score 0.45 0.45 0.43 0.45 0.40 0.55

trees sequentially, with each tree correcting the residuals of
the previous one, thereby improving predictive performance.
Known for its scalability and built-in regularization, XG-
Boost handles missing data, supports parallel and distributed
computing, and employs level-wise tree growth for effective
optimization. Key hyperparameters influencing performance
include the learning rate (learning rate), number of boosting
rounds (n estimators), tree depth (max depth), and regular-
ization terms (reg alpha, reg lambda). Proper tuning of these
parameters is essential to balance accuracy and efficiency.
To ensure robust and unbiased evaluation, all models were
validated using 10-fold cross-validation. This method divides
the dataset into ten subsets, training the model on nine and
validating on the remaining one, rotating through all folds. The
final performance is averaged over the ten iterations, providing
a reliable estimate of model generalization. This consistent
validation strategy was applied across all models to ensure
fair and comparative assessment.

IV. RESULTS AND DISCUSSION

This section presents the outcomes of experiments con-
ducted on the HBV-DS dataset, aimed at predicting fibrosis
and activity in chronic hepatitis B. The experiments were
performed using Python 3.10, using different libraries such
as scikit-learn, pandas, etc, for model implementation, prepro-
cessing, and evaluation. All tests were executed on a machine
equipped with 16 GB of RAM and an Intel Core i7 processor.

A. Impact of Missing Data Imputation

To handle missing values, we conducted a comparative
analysis of three imputation strategies for numerical features:
mean, median, and K-Nearest Neighbors (KNN) with k = 9.
For categorical features, the most frequent (mode) value was
used across all approaches. As shown in Table III, KNN
imputation with k = 9 consistently achieved superior perfor-
mance, effectively preserving the underlying data distribution
while minimizing bias. Notably, the impact of each imputation
method varied across models, highlighting that certain strate-
gies are better suited to specific learning algorithms.



B. Effect of SMOTE Oversampling

To mitigate class imbalance, the Synthetic Minority Over-
sampling Technique (SMOTE) was employed, resulting in an
equal class distribution of 25% per class. The effectiveness of
this approach is demonstrated in Table IV, where notable per-
formance gains were observed across all models. In particular,
MLP, XGBoost, and Random Forest (RF) exhibited substantial
improvements in recall and F1-score, underscoring SMOTE’s
positive impact on model sensitivity and overall classification
quality.

C. Feature Selection

To reduce redundancy and enhance interpretability, three
feature selection techniques were applied: RFE-CV, Selec-
tKBest, and Inf-FS. For RFE-CV, the optimal subset consisted
of 21 features, among which key variables such as BMI,
ALT, AST, and INR were retained. With SelectKBest, features
were ranked based on their univariate statistical relevance, and
those with a score greater than or equal to 5 were selected.
This resulted in 13 top features, with CVinitiale (initial viral
load), ALAT, and platelet count (PLAQ) emerging as the most
significant. Similarly, Inf-FS ranked features by importance
weights, and 16 features with weights 1 were retained. The
top-ranked feature corresponded to index 3 in the dataset.
Overall, these selection methods consistently highlighted clin-
ically relevant variables, forming a robust foundation for
downstream classification tasks.

1) Comparative Analysis of Feature Selection Methods:
The impact of feature selection on classification performance
was evaluated using three methods: RFE-CV (21 features),
SelectKBest (13 features), and Inf-FS (16 features). As shown
in Table V, RF and MLP consistently outperform other models
across all feature selection techniques. RF achieves the highest
performance with Inf-FS, recording an accuracy and F1-score
of 0.90. MLP follows closely, reaching an accuracy of 0.88
and an F1-score of 0.86 with RFE-CV, and an F1-score of
0.85 with Inf-FS. In contrast, SelectKBest results in lower
performance, with no model exceeding an F1-score of 0.79.
SVM, KNN, and DT yield suboptimal results, with F1-scores
remaining below 0.85 across all selection methods. Overall,
Inf-FS demonstrates superior effectiveness by selecting a
compact and highly discriminative feature subset and is thus
selected for use in subsequent experiments.

D. Final Classification Results of the Proposed Solution

The proposed solution integrates optimized preprocessing
steps using the most effective methods identified in prior
experiments to predict fibrosis and activity in chronic hepatitis
B using the HBV-DS dataset. Missing values were handled
using KNN imputation (K = 9) for numerical features and
mode imputation for categorical features. Class imbalance was
addressed with SMOTE, achieving a balanced 25% distri-
bution for each class. Features were selected using Inf-FS,
retaining 16 highly representative and discriminative features.
The models were trained with hyperparameters optimized via
GridSearchCV using 5-fold cross-validation. Random Forest

(RF, max depth=10, n estimators=200) and Multilayer Per-
ceptron (MLP, hidden layer sizes=(50,50,50), activation=relu,
solver=adam) emerged as the top-performing models. Table VI
presents the final classification results. RF achieved the highest
performance, with an accuracy of 0.92, precision of 0.91, recall
of 0.91, F1-score of 0.90, and AUC of 0.98. MLP followed
closely with an accuracy of 0.88 and an F1-score of 0.85. The
confusion matrix and AUC curve in Figure ?? further confirm
RF’s robustness, with True Positives of 33, 39, 38, and 41 for
classes 0 through 3, respectively.

The confusion matrix in Figure ?? confirms the RF model’s
ability to accurately classify all classes. These results highlight
the strong performance of RF, SVM, and MLP, with RF
demonstrating the highest overall accuracy and AUC. This
underscores its robust generalization capabilities and effec-
tiveness in predicting fibrosis and inflammatory activity in
patients with chronic hepatitis B. The findings of this study
emphasize the importance of integrating robust preprocessing
techniques such as SMOTE for class balancing and Inf-FS for
feature selection, with advanced ML models. The consistent
outperformance of RF and MLP across all evaluation metrics is
likely attributable to their ability to model complex, non-linear
relationships in clinical data. The use of GridSearchCV and
cross-validation further contributed to robust generalization
despite the dataset’s modest size. Nonetheless, some limita-
tions must be acknowledged. The relatively small sample size
may constrain the generalizability of the results across broader
patient populations. Additionally, while SMOTE effectively
addresses class imbalance, the synthetic samples may not fully
reflect the clinical variability of real-world cases. Future work
should explore integrating imaging data, longitudinal informa-
tion, or additional clinical features to enhance the pipeline’s
predictive accuracy and utility in personalized clinical decision
support.

V. CONCLUSION

This study introduced the HBV-BD dataset, a curated
clinical dataset for assessing hepatic fibrosis and
necroinflammatory activity in patients with chronic hepatitis
B. To evaluate its usability and clinical relevance, we proposed
an end-to-end machine learning pipeline encompassing robust
data preprocessing, including missing value imputation,
feature normalization, class balancing using SMOTE, and
comparative feature selection techniques. Six machine
learning models were developed and assessed across four
clinical datasets. In conclusion, the proposed HBV-DS dataset
and ML framework demonstrate both strong predictive
performance and clinical relevance. Future work will focus
on external validation and multi-modal data integration to
further improve generalization and clinical impact. The
HBV-BD dataset introduced in this work aims to support
future research in predictive modeling for chronic hepatitis
B. It can be shared privately upon request by contacting Ms.
Imen Akkari by filling out this form https://docs.google.com/
forms/d/e/1FAIpQLScGp3f5W XHngUN57ztdDOGJab9
lQMioDBcBxNjlEfPWEPvA/viewform?usp=dialog.

https://docs.google.com/forms/d/e/1FAIpQLScGp3f5W_XHngUN57ztdDOGJab9_lQMioDBcBxNjlEfPWEPvA/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScGp3f5W_XHngUN57ztdDOGJab9_lQMioDBcBxNjlEfPWEPvA/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScGp3f5W_XHngUN57ztdDOGJab9_lQMioDBcBxNjlEfPWEPvA/viewform?usp=dialog


TABLE IV
PERFORMANCE COMPARISON BEFORE AND AFTER SMOTE

Model Without SMOTE With SMOTE
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

MLP 0.42 0.21 0.17 0.15 0.75 0.78 0.75 0.71
SVM 0.58 0.50 0.49 0.49 0.57 0.48 0.47 0.44
KNN 0.49 0.26 0.22 0.24 0.49 0.42 0.37 0.33
XGBoost 0.48 0.50 0.13 0.21 0.70 0.60 0.55 0.55
RF 0.46 0.36 0.31 0.37 0.69 0.56 0.58 0.52
DT 0.26 0.15 0.08 0.10 0.55 0.47 0.39 0.38

TABLE V
MODEL PERFORMANCE WITH DIFFERENT FEATURE SELECTION METHODS

Model RFE-CV (21 Features) SelectKBest (13 Features) Inf-FS (16 Features)
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

MLP 0.88 0.88 0.87 0.86 0.80 0.79 0.79 0.79 0.84 0.90 0.81 0.85
SVM 0.86 0.86 0.86 0.85 0.75 0.77 0.75 0.74 0.82 0.83 0.82 0.81
KNN 0.73 0.74 0.73 0.70 0.70 0.74 0.74 0.74 0.71 0.72 0.72 0.69
DT 0.75 0.74 0.73 0.70 0.76 0.77 0.77 0.74 0.74 0.76 0.77 0.74

TABLE VI
FINAL MODEL PERFORMANCE ON THE HBV-DS DATASET

Model Accuracy Precision (per class) Recall (per class) AUC
0 1 2 3 0 1 2 3

MLP 0.88 0.93 0.80 0.89 0.93 0.61 0.95 0.95 1.00 0.98
SVM 0.91 0.94 0.83 0.98 0.93 0.76 0.93 0.98 1.00 0.98
KNN 0.83 0.95 0.71 0.95 0.80 0.44 0.90 0.98 1.00 0.94
DT 0.77 0.60 0.71 0.89 0.93 0.76 0.61 0.80 0.90 0.87
RF 0.92 0.89 0.89 0.93 0.98 0.80 0.95 0.93 1.00 0.98
XGBoost 0.85 0.76 0.76 0.95 0.93 0.68 0.85 0.90 0.95 0.97

Fig. 2. Confusion matrix of the Random Forest model
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hépatites virales en France: HEPATITES VIRALES. La Revue du
praticien (Paris), 61(1).

[3] European Association For The Study Of The Liver. (2012). EASL
clinical practice guidelines: management of chronic hepatitis B virus
infection. Journal of hepatology, 57(1), 167-185.

[4] Schafer, J. L., Graham, J. W. (2002). Missing data: our view of the
state of the art. Psychological methods, 7(2), 147.

[5] Van Buuren, S., Van Buuren, S. (2012). Flexible imputation of missing
data (Vol. 10, p. b1182). Boca Raton, FL: CRC press.

[6] Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P.
(2002). SMOTE: synthetic minority over-sampling technique. Journal
of artificial intelligence research, 16, 321-357.



Fig. 3. AUC curve of the Random Forest model
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