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Abstract—Parkinson’s disease (PD) is a progressive neurode-
generative disorder that leads to motor impairments. Early
detection is crucial for effective treatment; however, conventional
diagnostic methods are often costly, time-consuming, and inac-
cessible, limiting their widespread clinical adoption. To address
these challenges, we propose a novel hybrid approach that merges
Deep Learning (DL) features extrated from handwriting images
with voice characteristics using an optimized machine learning
(ML) classification technique. The integration of multimodal
data enhances robustness by reducing dependency on a sin-
gle biomarker, making PD diagnosis more reliable. We begin
by augmenting both of the datasets size to expand samples
diversity. Then, we combine DenseNet201’s detailed features
with ResNet50’s robust spatial features to enhance analytical
precision and capture both fine-grained and high-level patterns
of handwriting images. The obtained DL features are fused
with voice characteristics leveraging complementary information.
Afterwards, feature selection is performed using Fisher’s score to
retain the most relevant attributes, further boosting classification
accuracy. We achieve an accuracy of 92.31%, demonstrating
superior performance compared to state-of-the-art methods.

Index Terms—Parkinson disease detection, Deep features, Fea-
ture fusion, Fisher score, Extratrees.

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that primarily affects the central nervous system,
specifically targeting the dopaminergic neurons in the midbrain
[1]]. As the disease progresses, the loss of dopamine-producing
neurons disrupts normal brain function, leading to a range of
motor and non-motor symptoms.

Non-motor symptoms often appear in the early stages of
PD, preceding the onset of motor impairments. These symp-
toms, which include loss of smell, memory decline and sleep
disturbances [2], can emerge years before motor symptoms.
However, their use for diagnostic purposes is challenging
due to their overlap with other medical conditions and vari-
ability among individuals. Motor symptoms, on the other
hand, typically develop later and are more characteristic of
PD. The primary motor impairments include bradykinesia
(slowed movement), muscle rigidity, and resting tremors.These

symptoms are critical for clinical diagnosis, as neurologists
rely heavily on them to evaluate disease progression.

Early diagnosis is crucial for effective intervention, as prompt
treatment can slow disease progression and significantly en-
hance patients’ quality of life. However, traditional diagnostic
methods, such as clinical evaluations and neuroimaging, are
often time-consuming, and not universally accessible.
Various Machine Learning (ML) and Deep Learning (DL)
techniques have been consequently developed to facilitate
the detection of PD by analyzing different modalities [3]].
DL has revolutionized PD analysis by enabling automated
feature extraction and classification. Unlike traditional ML
methods that depend on handcrafted features [4]], DL models
autonomously learn hierarchical and intricate representations
from raw data, capturing subtle patterns.

Most state of the art methods often exploit unimodal analysis
for PD detection which is insufficient for accurate diagnosis.
PD presents diverse motor and non-motor symptoms, which
require multiple data sources, such as handwriting dynamics,
and speech signals to provide a comprehensive assessment.
Combining these modalities improves diagnostic accuracy by
leveraging complementary information, mitigating the limita-
tions of unimodal analysis.

To tackle these challenges, we propose a hybrid approach
for PD detection that integrates extracted DL features from
drawing images with voice features, using ExtraTrees for
optimized classification. By integrating multimodal features,
our method significantly enhances classification accuracy and
improves the model’s ability to differentiate PD patients from
healthy individuals. This approach not only boosts overall
performance but also ensures better generalization, making PD
detection more reliable, adaptable, and clinically applicable.
To summarize, our key contributions are:

o Multimodal data exploitation: We integrate both hand-
writing images and voice data to leverage complementary
information from multiple modalities. Handwriting im-
ages capture spatial and fine-grained motor impairments,



while voice data provide dynamic insights into speech
patterns and motor control. By combining these modal-
ities, our approach enhances feature representation and
strengthens the robustness of PD detection.

o Feature fusion: We employ transfer learning with pre-
trained models, specifically DenseNet201 and ResNet50,
to efficiently extract high-quality features from handwrit-
ing images. DenseNet201 captures intricate feature rep-
resentations through dense connectivity, while ResNet50
uses residual connections to preserve critical spatial in-
formation. By fusing both extracted handwriting Deep
features with voice characteristics, our approach enhances
feature diversity and affords a more informative and
discriminative representation.

o Improved efficiency : We use Fisher’s score to reduce
dimensionality by selecting the most relevant features,
and employ the ExtraTrees algorithm combined with Grid
Search Cross-Validation to optimize hyperparameters and
ensure robust classification.

The remainder of this article is structured as follows: Section
IT provides a review of previous research on PD detection.
Section III details the proposed methodology. Section IV
describes the experimental setup, presents the results, and
discusses key findings. Finally, Section V concludes the study
with final remarks and future research directions.

II. RELATED WORK

This section offers an in depth overview of recent research
on PD detection, focusing on the application of DL techniques
to handwriting-based data, voice recordings, besides multi-
modal approaches.

A. PD detection using handwriting images

Handwriting plays a crucial role in PD detection, as it
directly reflects fine motor control.For instance, Arasavali et
al. [[6] explored the use of a Deep Neural Network Multi-
Layer Perceptron (DNN-MLP) model to classify individuals
as either Parkinson’s patients or healthy controls by analyzing
handwriting dynamics. The dataset comprised features such
as root mean square values, mean relative tremor, and radial
deviations between reference templates and handwritten sam-
ples. The trained DNN-MLP achieved a classification accuracy
of 83%. Similarly, Wang et al. [7] propose a method for
Parkinson’s disease classification that captures fine-grained
temporal dynamics within handwriting signals. The approach
involves segmenting the handwriting trajectory into fixed-
length sequences and employing a compact one-dimensional
hybrid neural network to extract meaningful temporal features
from each segment. This strategy effectively captures local-
ized signal variations, achieving a high diagnostic accuracy
of 90.7% on the widely used PaHaW dataset. In an other
work [8]], the authors investigated PD detection by extracting
structural features using the Histogram of Oriented Gradients
technique. To enhance dataset diversity and model robustness,

data augmentation was applied. A Convolutional Neural Net-
work was then trained on the augmented feature set, achieving
an accuracy of 86.67%.

B. PD detection using voice data

Voice data is essential in Parkinson’s disease detection, as
speech abnormalities frequently emerge early in the disease,
offering a non-invasive, easily accessible, and sensitive means
of identifying motor and neurological impairments. As an
example, Malekroodi et al. [9] applied the VGG16 deep
learning model to classify different stages of PD based on
vocal acoustic features, achieving an accuracy of 91.8%. The
model, known for its capacity to extract complex patterns
through convolutional layers, was trained on voice recordings.
Key vocal features, such as fundamental frequency, jitter,
and shimmer, proved essential for accurately distinguishing
between PD progression levels. This method highlights the
power of DL in utilizing subtle speech variations for non-
invasive and reliable PD progression assessment. Additionally,
[10] introduces a hybrid system for PD detection using speech
signals, employing two datasets and extracting 17 acoustic
features. The top eight features are selected through a ge-
netic algorithm, and four classifiers are tested, achieving 90%
accuracy on the King’s College London dataset. In an other
work, [11]] evaluates various ML classifiers for PD detection
using speech features. The results show that the Gradient Boost
model outperforms other classifiers, achieving the highest test
accuracy of 91.53%.

C. PD detection using multimodal approaches

Multimodal approaches in PD detection are valuable as they
combine different data types, offering a comprehensive under-
standing of the disease and capturing its complex symptoms. In
[12], the authors introduced a robust framework that integrates
DL models with interpretability techniques to enhance PD di-
agnosis. The framework leverages Convolutional Neural Net-
works for analyzing imaging data, Recurrent Neural Networks
for sequential sensor data, and fully connected networks for
structured clinical data, achieving a classification accuracy of
92%. Similarily, [13]], the authors present a preliminary study
that utilizes a Vision Transformer for analyzing handwriting
data and an Audio Spectrogram Transformer for vocal data
to detect PD. The study focuses on spiral and meander
drawings, as well as sustained phonation of vowels /a/ and
/o/, achieving a classification accuracy of 90%. Additionally,
[14], investigates various speech and language representations
for the automatic detection of PD patients. Initially, each
modality is analyzed separately. General representations, such
as Wav2Vec and BETO, are combined with disease-specific
representations, such as phonemic identifiability in speech and
grammatical unit analysis in language. The most effective
speech and language representations are then fused using a
Gated Multimodal Units strategy, achieving an accuracy of
87.3%.



III. METHODOLOGY

In this study, we propose a novel framework for PD de-
tection that leverages multimodal data, primarily handwriting
images and voice measurements, by integrating feature fusion,
dimensionality reduction, and optimized classification tech-
niques into a unified pipeline. Handwriting images capture
fine motor impairments such as tremors and micrographia,
while voice data reflects subtle speech abnormalities and vocal
impairments associated with PD, making their combination
highly complementary. Feature fusion integrates these distinct
yet related modalities into a richer and more informative
representation. This enhanced feature space is subsequently
refined through dimensionality reduction, improving computa-
tional efficiency and reducing the risk of overfitting. Finally, an
optimized classification technique is applied to the compacted
feature set, enhancing decision-making accuracy and ensuring
more robust PD detection. Figure [I] provides an overview of
the proposed approach.

A. Data Augmentation

Data augmentation (DA) is crucial for enhancing model
generalization and increasing feature diversity, particularly in
scenarios involving limited or imbalanced datasets.

1) DA for handwriting images: The limited size of the
exploited handwriting dataset [21]], which is described in
the experiments section, poses a significant challenge to
the performance and generalization ability of the model. To
mitigate this issue, classic DA techniques were employed.
DA involves applying label-preserving transformations such
as random translations, scaling, flipping, and rotations, which
help increase dataset diversity and reduce overfitting. In this
study, augmentation was carried out by rotating each image by
90°, 180°, and 270°, as well as by applying a vertical flip. As
a result of these transformations, the original dataset of 204
images, comprising samples from both healthy individuals and
patients with PD, was expanded to a total of 3264 images.
This augmented dataset was subsequently used to evaluate the
performance of the proposed approach.

2) DA for voice data: Since the utilized voice dataset [22]]
exhibits a class imbalance comprising 31 individuals, of whom
23 are diagnosed with PD, we address this issue using the
Synthetic Minority Over-sampling Technique (SMOTE) [23].
Rather than simply replicating samples from the minority
class, SMOTE intelligently generates new synthetic instances
by interpolating between existing samples within the minority
class feature space. This approach enhances the diversity of
the training data, mitigates overfitting, and promotes more
balanced and robust model learning, especially when distin-
guishing between healthy individuals and those affected by
PD. In the SMOTE algorithm, each synthetic sample s is
produced by linearly interpolating between a minority class
instance = and one of its 5 nearest neighbors xr, which is
randomly selected. The interpolation is expressed as:

s=xz+u-(rr — 1), (1)

where u is a random scalar such that 0 < v < 1 and xR is
randomly selected from among the five closest neighbors of z
within the minority class. .

B. Deep feature Extraction

We utilize transfer learning with two pretrained DL models,
DenseNet201 [15] and ResNet50 [[16]], to efficiently extract
high-level features from handwriting images. These models
are particularly useful in the context of PD detection, as they
are capable of identifying subtle patterns in handwriting that
may indicate motor impairments associated with the disease.

1) DensNet201: is chosen for its distinctive architecture,
where each layer is connected to every other layer in a dense
manner. This approach allows the network to learn highly
detailed features by promoting feature reuse and improving
gradient flow. These characteristics are particularly beneficial
when working with limited datasets like those in PD handwrit-
ing analysis, as DenseNet201 can capture intricate variations
in handwriting, such as reduced stroke size, irregular pen
pressure, and changes in writing fluidity, which are often seen
in Parkinsonian patients.

2) ResNet50: employs residual connections, which enable
layers to skip over others, making it easier for the network
to learn deeper representations without losing essential infor-
mation. This architecture helps preserve spatial features, such
as the shape and continuity of letters and lines, which are
crucial for detecting subtle motor symptoms in handwriting.
In PD detection, these spatial features can reveal issues like
tremors or difficulty in maintaining consistent pressure or
stroke alignment.

C. Feature fusion

Feature fusion [17] [18] across two levels is a sophisticated
approach for integrating diverse feature sets to improve the
performance of ML models. In the case of PD detection,
combining handwriting and voice features allows the model
to leverage complementary information from different data
sources, leading to more precise and reliable predictions. This
two-stage feature fusion process can be described as follows:

1) Level 1: Fusion of Deep Features from Handwriting
Data: The first stage of fusion focuses on combining the deep
features extracted from the handwriting dataset. We utilize two
powerful pre-trained models, DenseNet201 and ResNet50, to
extract meaningful features from handwriting images. After-
wards, we concatenate the obtained feature vectors from the
final fully connected layers of DenseNet201 and ResNet50.
This fusion operation is represented as:

Fhandwriting = Concat<FDenseNet7 FResNet)

Here:

FpenseNet denotes the feature vector from DenseNet201.

Fresnet 1S the feature vector from ResNet50.

concat(-) refers to the operation of concatenating the two
feature vectors.
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Fig. 1. Overview of the proposed approach.

This combined feature vector captures the unique capabili-
ties of both models, making it more informative for subsequent
processing.

2) Level 2: Fusion of Handwriting and Voice Features:
The second stage involves merging the handwriting features
Fhandwriting With the voice features, which provide valuable
insights into Parkinson’s disease detection. Voice features such
as fundamental frequency (Fo), jitter, shimmer, and nonlinear
dynamical measures (e.g., RPDE and D2) offer important clues
about speech abnormalities related to Parkinson’s disease.

Let Fyoice represent the feature vector derived from the
voice dataset. This vector typically includes various character-
istics of speech signals, such as pitch and spectral information.

At this level, we combine the handwriting features
Fhandwriting and the voice features Fygice to form a uni-
fied feature vector. The fusion process can be performed by
concatenating these two feature vectors:

Fcombined = Concat(Fhandwriting7 Fvoice)

D. Feature Selection using Fisher Score

Feature selection is a critical step when combining hand-
writing and voice data for PD detection. It ensures that the
most informative features are selected, reducing computational
complexity while maintaining high classification performance.
To achieve this, we utilize the Fisher Score [19] method to
measure the relevance of each feature.

The Fisher Score for a feature f; in the combined feature
vector Frombined 1S calculated using the ratio of between-class
variance (Sg) to within-class variance (Sy):

_SB

Where:

o Sp represents the between-class scatter, which captures
the separation between the means of the two classes (PD
and healthy).

e Sy denotes the within-class scatter, which measures the
variance within each class.

By computing the Fisher Score for all features, we can
identify those that provide the most discriminatory power for
PD classification, allowing for a more efficient and effective
model.

E. Optimized Classification using Extratrees

In PD detection, the ExtraTrees algorithm [20] is utilized as
an ensemble method to improve classification accuracy by ag-
gregating predictions from multiple decision trees. ExtraTrees
builds trees with random splits, allowing the model to explore
diverse decision boundaries, making it effective for complex
feature sets like fused handwriting and voice data.

To optimize the ExtraTrees model, we apply Grid
Search Cross-Validation (GridSearchCV), which systemati-
cally searches for the best combination of hyperparameters,
ensuring robust performance. The optimization can be repre-
sented as:

h = arg max (GridSearchCV (ExtraTrees, X, y, 0))

where:

o his the optimal hyperparameter configuration.

o ExtraTrees is the classifier.

e X is the feature matrix (fused handwriting and voice
features).

« y is the label vector (Parkinson’s or healthy).

o 0 represents the hyperparameters, such as the number of
trees and tree depth.



This process ensures optimal tuning of the model for
accurate PD detection.

IV. EXPERIMENTS

A. Dataset

1) Handwriting dataset: The dataset used in this study
[21] was collected from participants who were asked to
draw spirals and waves on paper, which were then digitized.
Individuals with PD often produce irregular, shaky patterns
in their drawings, while healthy individuals tend to create
smoother, more consistent curves. The dataset contains a total
of 204 images, equally divided into two categories: 102 spiral
drawings and 102 wave drawings. Each image is labeled to
indicate whether it corresponds to a PD patient or a healthy
individual, enabling the analysis of motor control differences
between the two groups. Fig [2| illustrates an example of the
exploited handwriting samples.

(a) (c)

7
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Fig. 2. Example of wave handwriting samples for: (a) healthy and (b) PD
Patient and example of spiral handwriting samples for : (c) healthy and (d)
PD patient.

2) Voice dataset: This exploited UCI dataset [22] com-
prises biomedical voice measurements obtained from 31 in-
dividuals, including 23 diagnosed with PD. The data is struc-
tured in a tabular format, with each column representing a
distinct voice feature (such as jitter, shimmer, and other vocal
characteristics), while each row corresponds to one of the 195
individual voice recordings from these participants.

B. Evaluation metrics

Evaluation metrics assess a model’s performance in classifi-
cation tasks using the confusion matrix, which consists of True
Positives (TP), False Positives (FP), False Negatives (FN), and
True Negatives (TN). Key metrics include:

o Accuracy (Acc): The ratio of correct predictions to total
predictions:

TP+ TN

A:
CTTPYTN+FP+FN

o Precision: The proportion of true positives among posi-
tive predictions:

Precision = L
TP+ FP
o Recall: The proportion of true positives identified by the
model:
Recall = __rr
TP+ FN

e F1 Score: The harmonic mean of Precision and Recall:

2 x Precision x Recall

F1 S =
core Precision 4+ Recall

These metrics provide a balanced assessment of model
performance, focusing on classification accuracy, precision,
sensitivity, and balance between positive predictions.

C. Results and discussion

This section focuses on evaluating the performance of the
proposed method by utilizing three key metrics: accuracy
curves, confusion matrices, and loss curves. These metrics pro-
vide a comprehensive view of the model’s effectiveness.The
confusion matrix presented in Fig. [3] reveals that the classi-
fication model performs effectively in differentiating between
Healthy and PD cases. It accurately classifies 31 PD cases
(True Positives) and 5 Healthy cases (True Negatives). How-
ever, it incorrectly labels 2 Healthy individuals as PD (False
Positives) and 1 PD case as Healthy (False Negative). This
indicates that the model excels in detecting PD, demonstrating
a high recall for PD cases. Fig. [ illustrates a strong learning

Confusion Matrix

Healthy
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wv
N

True

|
Healthy
Predicted

Fig. 3. Confusion matrix of the proposed approach.

performance with a high accuracy and a low loss. The close
alignment between the training and validation curves suppose
a good generalization, with no evident overfitting. Table
[[ provides a comparison of various classification methods
utilizing handwriting and voice features, emphasizing their
respective accuracy rates. The proposed approach, which in-
tegrates feature fusion, Fisher score, and ExtraTrees, achieves
the highest accuracy of 92.31%, surpassing all other methods.
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TABLE I
EVALUATION OF THE PROPOSED APPROACH PERFORMANCE IN
COMPARISON WITH STATE OF THE ART METHODS

L Reference Method Fetures type | Accuracy

[6] DNN + MLP Handwriting | 83%
18 HOG + CNN Handwriting | 86.67%
[ 19 VGGI16 Voice 91.8%
L Gradient Boost model Voice 91.53%

|13 Vision Transformer Ham%\fmung 90%

+ voice
Our proposed approach | Feature fusion + Fisher score + Extratrees ?iﬂgmng 92.31%

V. CONCLUSIONS

Integrating advanced ML techniques with multimodal data,
such as handwriting and voice features, holds significant
potential in revolutionizing the early detection and diagnosis
of PD. Thus, the proposed approach demonstrates superior
performance compared to traditional methods that rely on
single data sources, reaching an accuracy of 92.31%. This
performance outperforms existing state-of-the-art methods,
highlighting the efficacy of multimodal data in capturing the
complex nature of PD symptoms. As research progresses,
incorporating additional data types will further enhance the
precision and robustness of PD detection, paving the way for
earlier and more effective interventions.
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