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Abstract—Parkinson’s Disease (PD) is the second most com-
mon neurodegenerative disorder after Alzheimer’s disease, signif-
icantly impairing motor functions and quality of life. Early and
accurate monitoring of PD progression is essential for improving
patient outcomes. Among the innovative approaches, vocal signal
analysis has gained traction as a non-invasive tool for assessing
disease progression and treatment efficacy. PD patients often
experience dysarthria, a neurological speech disorder affecting
the pneumo-phono-articulatory system responsible for voice and
language production. This study leverages machine learning
algorithms to predict the motor and total scores of the Unified
Parkinson’s Disease Rating Scale (UPDRS), widely used for
tracking PD symptoms. Utilizing a dataset of 5,875 samples,
various regression models, including Decision Tree, Random
Forest, XGBoost, and Extra Tree, were trained and tested.
Additionally, an ensemble Stacking Regressor was implemented
to enhance prediction accuracy. The analysis of vocal recordings
offers an innovative, non-invasive method for monitoring PD
progression, reducing reliance on more subjective and invasive
traditional approaches. The use of the ensemble model surpassed
the performance of individual models, achieving an R² of 98.31%
for predicting total UPDRS and 98.21% for motor UPDRS. Fur-
thermore, the ensemble approach mitigates the risk of overfitting,
ensuring greater robustness and reliability in predictions.

These findings demonstrate the potential of machine learning
in providing reliable and objective tools for PD monitoring, over-
coming the subjectivity and limitations of traditional methods.

I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive neurodegenerative
disorder of the central nervous system, first described by James
Parkinson in 1817 [1]. It is characterized by the degeneration
of dopaminergic neurons in the substantia nigra, leading to
reduced dopamine levels. This neurotransmitter deficit impairs
the basal ganglia, which are responsible for initiating voluntary
movements, suppressing involuntary actions, and coordinating
posture changes. PD symptoms generally manifest after a loss
of 50% of these neurons, typically appearing around the age
of 70 in women and 68 in men, though juvenile-onset cases
are also documented.

Motor symptoms [2] include tremors, bradykinesia, rigidity,
and speech difficulties, such as hypophonia and dysarthria.
Non-motor symptoms [3] encompass cognitive impairments,
mood disorders, sleep disturbances, and autonomic dysfunc-
tions. Of particular interest are vocal alterations, including
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reduced pitch variability, monotony, and vocal tremors, which
can precede motor symptoms. These changes stem from hy-
pokinesia and rigidity of laryngeal muscles, affecting phona-
tion and contributing to reduced communication efficacy.

Advanced vocal analysis has emerged as a promising tool
for understanding PD progression and early diagnosis, offering
insights into its complex interplay of symptoms.

Recent advancements emphasize the collaboration between
medicine and engineering to improve the quality of life for
Parkinson’s Disease (PD) patients. Projects like REMPARK
[4] showcase the potential of telemonitoring algorithms and
wearable technologies for patient management. REMPARK
integrates wearable sensors and smartphone connectivity to
monitor motor symptoms in real time and provide feedback
to healthcare professionals. This system supports personalized
care and treatment optimization, improving patient-doctor in-
teraction while reducing hospitalizations and healthcare costs.

The potential impact of REMPARK spans three critical
areas: medical, social, and economic benefits. Medically, it
enhances disease management and rehabilitation by providing
accurate, real-time insights into patient conditions. Socially, it
contributes to a more sustainable European healthcare system
by offering high-quality, personalized care. Economically, it
reduces hospitalization rates and drives innovation in Personal
Health Systems (PHS) and medical technologies. REMPARK
also fosters interoperability standards and secure health data
communication, improving patient-doctor interaction and pro-
moting a more integrated healthcare ecosystem.

Artificial intelligence (AI) has emerged as a valuable tool for
medical diagnosis [5]. In particular, AI is used for diagnosing
PD by analyzing biomarkers, including vocal and handwriting
features. Vocal analysis [6] [7] has been used to detect
abnormalities such as reduced pitch variability and tremors,
while handwriting analysis [8] identifies symptoms like micro-
graphia, which can aid early detection. These technologies aim
to create autonomous systems for reliable disease monitoring,
enabling earlier interventions and personalized care, ultimately
improving patient outcomes.

AI also enhances healthcare systems by optimizing resource
allocation, lowering operational costs, and improving diagnos-
tic accuracy. By analyzing complex data, AI systems support
better treatment planning and more efficient care, marking a
shift toward accessible, patient-centered healthcare.

This study, based on the dataset from Athanasios Tsanas et
al. [9], focuses on preprocessing data and evaluating various



regression algorithms to predict PD severity using the UPDRS
scale. Among the models tested, the Extra Trees algorithm
achieved the highest prediction accuracy for both motor and
total UPDRS scores.

Section II describes the UPDRS limitations and Dataset
features for Parkinson’s analysis.

Section III explains the regression models used for predic-
tion and data preprocessing.

Section IV shows the evaluation metrics used, the perfor-
mance of the 4 regression algorithms and finally the Stackiing
Regression algorithm.

Section V discusses the results before providing the conclu-
sions

II. UPDRS AND DATASET FEATURES FOR PARKINSON’S
ANALYSIS

A. Unified Parkinson’s Disease Rating Scale(UPDRS)

The Unified Parkinson’s Disease Rating Scale (UPDRS)
is a widely used clinical tool for assessing the severity and
progression of Parkinson’s Disease (PD) [10]. It evaluates var-
ious symptoms through a standardized questionnaire, covering
motor function, mood, behavior, and daily activities, providing
a comprehensive view of the patient’s condition. The scale’s
reliability and sensitivity make it ideal for tracking subtle
changes in PD symptoms over time, a critical factor in both
clinical practice and research.

In this study, UPDRS is chosen as the evaluation method
for measuring PD progression. Its multidimensional frame-
work ensures that diverse aspects of the disease are sys-
tematically quantified, enabling robust correlations between
speech impairments and overall disease severity. Addition-
ally, its widespread clinical adoption allows for consistency
and comparability across studies. By aligning telemonitoring
methods with UPDRS, the study ensures clinically meaningful,
standardized, and reproducible results, bridging traditional
assessments with innovative remote monitoring solutions.

B. Dataset Features

The dataset used in this study includes several features
that provide quantitative and qualitative insights into the vocal
characteristics and clinical conditions of Parkinson’s Disease
(PD) patients. Below is a detailed description of the features:

• Subject#: A categorical variable that uniquely identifies
each patient in the trial.

• Age: A numerical variable indicating the age of the
subject at the time of measurement, expressed in years.

• Sex: A categorical variable coded as 0 for male and 1
for female.

• Test time: A numerical variable, expressed in days,
representing the time elapsed from the start of the trial
to the recording session.

Vocal recordings capture a nearly periodic signal caused by
the opening and closing of the glottis during phonation. The
period of this signal, as illustrated in Fig.1 [11], is called the
pitch period, while the vibration frequency of the vocal cords

(inverse of the pitch period) is referred to as the fundamental
frequency (Fo).

Fig. 1. Tone period representation for the vocal recording [11].

Variations between successive vocal cycles can be analyzed
through the following features:

• Jitter (%): The percentage variation in the fundamental
frequency (Fo).

• Jitter (Abs): The absolute variation in the fundamental
frequency.

• Jitter: RAP: Relative Average Perturbation, measuring
pitch variation averaged over three consecutive periods.

• Jitter: PPQ5: Five-point Period Perturbation Quotient,
averaging pitch variation over five consecutive periods.

• Shimmer (dB): The variation in amplitude expressed in
decibels.

• Shimmer: APQ3: Three-point Amplitude Perturbation
Quotient, representing amplitude variation averaged over
three consecutive periods.

• Shimmer: APQ5: Five-point Amplitude Perturbation
Quotient, averaged over five consecutive periods.

• Shimmer: APQ11: Eleven-point Amplitude Perturbation
Quotient, averaged over eleven consecutive periods.

• Shimmer: DDA: Difference of Differences of Ampli-
tude, calculated as the mean absolute difference in am-
plitude among three consecutive vocal cycles.

• HNR (Harmonics-to-Noise Ratio): Indicates the pro-
portion of harmonic components relative to noise in the
voice.

• NHR (Noise-to-Harmonics Ratio): Measures the noise
present in the voice relative to harmonic components.

• RPDE (Recurrence Period Density Entropy): Assesses
the ability of vocal folds to sustain simple vibrations and
quantifies deviations from exact periodicity.

• DFA (Detrended Fluctuation Analysis): Quantifies the
stochastic similarity of turbulent noise in the vocal signal.

• PPE (Pitch Period Entropy): Measures the unpre-
dictability of pitch periods, reflecting compromised pitch
control during sustained phonation.

• Motor UPDRS: The score for the motor section of the
original UPDRS scale (maximum 108).

• Total UPDRS: The total UPDRS score, summing all
sections of the original scale (maximum 199).



These features, derived from voice recordings and clinical
observations, are essential for training machine learning mod-
els to predict motor UPDRS and total UPDRS scores. Using
this dataset, models can accurately estimate these clinical
scores, bypassing the issue of neurologist misinterpretation
and patient misperception. Each feature correlates with key
symptoms of PD, such as changes in pitch, amplitude, and
voice quality, providing a quantitative representation of the
patient’s condition.

III. ”THE MACHINE LEARNING-BASED METHODOLOGY”

The procedure adopted to process the data and to implement
the machine learning models for PD prediction is represented
in Fig. 2. The procedure begins with data preprocessing,
which includes handling missing values, data visualization,
and normalization or scaling. The optimized dataset is then
used to implement various machine learning algorithms, in-
cluding Random Forest, Decision Tree, XGBoost, and Extra
Trees. Finally, the stacking regressor combines these models
to produce the final results.

The dataset used in this study consists of 5,875 vocal
recordings from 42 early-stage PD patients, collected during a
six-month clinical trial. Recordings were performed weekly at
patients’ homes using the At-Home Testing Device (AHTD),
which enables remote telemonitoring. Each session included
sustained phonation of the vowel “ahhh,” recorded via a head-
mounted microphone. The dataset comprises 4,008 male and
1,867 female samples, highlighting PD’s higher prevalence in
men. The patients’ ages range is from 36 to 85 years, with a
mean age of approximately 65 years. The motor UPDRS and
total UPDRS scores, key clinical indicators of PD severity,
show considerable variability, with means of 21.3 and 29.0,
respectively. Variations in vocal features such as Jitter(%) and
Jitter(Abs) are also observed, reflecting subtle changes in pitch
stability.

A. Data Preprocessing

The development environment was configured using Ana-
conda, the most widely used platform for Data Science and
Machine Learning with Python. Anaconda simplifies the pro-
cess of setting up an integrated development environment
by providing tools such as Spyder and Jupyter Notebook,
along with a Python interpreter and a package manager
named Conda. Additionally, it includes over 300 pre-installed
libraries, enabling an immediate and efficient workflow.

The following libraries were utilized in this study, each
serving a specific purpose:

• Pandas: Used for data manipulation and analysis, en-
abling efficient handling of numerical tables and time-
series data.

• NumPy: Facilitated operations with large vectors and ma-
trices, improving computational efficiency for numerical
data processing.

• Seaborn: Employed to generate statistical plots, provid-
ing insights that could not be easily derived from tabular
data.

Fig. 2. Workflow of data preprocessing and model implementation.

• Matplotlib: Used for creating static, animated, and inter-
active plots. Scatter plots in Chapter 2 were created using
this library.

• Scikit-learn: An open-source Machine Learning library,
utilized for implementing algorithms such as decision
trees and evaluating model performance using metrics
like accuracy and Mean Squared Error (MSE).

During the data preprocessing phase, the ‘subject#’ feature
was removed as it introduced unnecessary variability without
contributing meaningful information to the regression models.
Missing values were addressed by verifying the completeness
of the dataset, which was confirmed to contain no null values.
Data visualization shows Jitter(%) values with positive bias,
indicating reduced vocal stability in some patients due to
bradykinesia and rigidity. Motor UPDRS scores range from
5 to 39, clustering between 15 and 28, reflecting mild motor
symptoms. Similarly, total UPDRS scores range from 7 to 54,
with a mean of 29.0 and moderate variability, suggesting that
patients present with early Parkinson’s disease with varying
severity of symptoms. Before training the regression models,
additional preprocessing steps were performed to prepare the
data. The target variables motor UPDRS and total UPDRS
were separated from the dataset to create the dependent
variables y motor and y total, while the independent features
were stored in a variable X with a shape of (5875, 19),
representing all observations and 19 independent features.

A normalization step was then applied to ensure that all
independent features contribute equally during model training.



This technique standardizes the features to have a mean of 0
and a standard deviation of 1, calculated using the formula:

Xscaled =
X − µ

σ
where:
• X is the original feature value,
• µ is the mean of the feature,
• σ is the standard deviation of the feature.
To evaluate the performance of the models on unseen data,

the dataset was split into a training set and a test set. The
split ratio was set to 80% for training and 20% for testing.
The split was performed twice, once for each target variable
(motor UPDRS and total UPDRS), while maintaining the
same partitioning for the independent features X.

The resulting dimensions of the datasets are as follows:
• X train: (4700, 19) X test: (1175, 19)
• y train total: (4700, 1) y test total: (1175, 1)
• y train motor: (4700, 1) y test motor: (1175, 1)
This dual splitting approach allowed for the independent

handling of the two output variables, motor UPDRS and
total UPDRS, while ensuring that the same set of independent
features was used for both tasks.

B. Regression Model

• Decision Tree: The Decision Tree algorithm is a simple
and efficient model for both classification and regression
tasks [12]. It splits data hierarchically using binary de-
cisions at each node, making the decision process inter-
pretable. However, it is prone to overfitting, especially
when no regularization is applied.

• Random Forest: Random Forest, introduced by Leo
Breiman in 2001, builds an ensemble of decision trees us-
ing random subsets of data and features at each split. This
randomness reduces overfitting and enhances stability. It
aggregates predictions from all trees by averaging for
regression tasks, and is robust against noise with minimal
data preparation required.

• XGBoost: Based on Gradient Boosting, XGBoost builds
regression trees iteratively to minimize errors from previ-
ous models. It employs L1 and L2 regularization to penal-
ize model complexity, reducing overfitting. XGBoost is
known for its computational efficiency and high accuracy,
requiring fewer resources than other methods.

• Extra Trees: Extra Trees (Extremely Randomized Trees)
enhances model diversity by using random cut-points
for splits and the entire dataset instead of bootstrap
samples. This reduces variance while maintaining low
bias, leading to highly accurate model [13]. It does not
require optimal split-point selection, which significantly
speeds up computations.

The implementation of the regression algorithms followed
a structured approach aimed at predicting the output variables
motor UPDRS and total UPDRS. For each algorithm, two
separate models were created, one for each target variable.
The implementation consisted of the following steps:

1) Library Import: Required libraries were imported, in-
cluding mean_square_error and r2_score from
the sklearn.metrics module.

2) Model Creation: Two models were created for each
algorithm, one to predict motor_UPDRS and the other
for total_UPDRS. Both models were trained using the
training dataset (X_train) with the fit() function.

3) Prediction Generation: Using the trained models, pre-
dictions were made on the test dataset (X_test) with
the predict() function.

4) Model Evaluation: The performance of each model
was assessed using three key metrics: the coefficient of
determination (R2), the Mean Square Error (MSE), and
the Root Mean Square Error (RMSE).

For each model, basic hyperparameter values were adopted to
ensure comparability and reproducibility: random_state=0
for the Decision Tree, and n_estimators=100 with
random_state=42 for Random Forest, XGBoost, and Ex-
tra Trees. No extensive hyperparameter optimization or cross-
validation was performed, as the focus was on baseline model
behavior and relative performance under uniform conditions.

IV. EVALUATION, PERFORMANCE ANALYSIS, AND
STACKING REGRESSION RESULTS

A. Evaluation

To assess the performance of the implemented regression
models, three key evaluation metrics were used: the coefficient
of determination (R2), the Mean Square Error (MSE), and the
Root Mean Square Error (RMSE). These metrics provide a
comprehensive evaluation of the predictive accuracy and error
magnitude of each model.

Coefficient of Determination (R2)
The R2 score measures how well the regression model

predicts the target variable compared to the mean of the data.
It is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where yi represents the true values, ŷi are the predicted values,
and ȳ is the mean of the true values. A R2 value close to 1
indicates a good fit.

Mean Square Error (MSE)
The MSE measures the average squared difference between

the true and predicted values, penalizing large errors. It is
defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

A lower MSE indicates better predictive performance.
Root Mean Square Error (RMSE)
The RMSE is the square root of the MSE, providing an error

metric in the same units as the target variable. It is expressed
as:

RMSE =
√

MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2



The RMSE is useful for interpreting model error in practical
terms, as it reflects the magnitude of prediction errors.

These metrics were systematically applied to evaluate the
models for both target variables: motor UPDRS and to-
tal UPDRS. This approach ensured a consistent and reliable
comparison of the regression algorithms, including Decision
Tree, Random Forest, Extra Trees, and XGBoost.

B. Performance Analysis

The comparison of R², MSE, and RMSE scores across the
regression algorithms is illustrated in Fig. 3 and Fig. 4, which
shows histograms generated using Python’s Matplotlib library,
for the total UPDRS and motor UPDRS respectively.

Fig. 3. Evaluation metrics for total UPDRS prediction

For the total UPDRS, the Decision Tree algorithm achieved
an R2 of 91.49%, an MSE of 9.42, and an RMSE of 3.07.
Despite a good fit (R2 > 90%), it has the highest MSE among
the models, indicating greater prediction error variability.

The Random Forest model demonstrated excellent perfor-
mance with an R2 of 97.68%, an MSE of 2.57, and an
RMSE of 1.60, benefiting from ensemble learning to reduce
overfitting and improve robustness.

XGBoost, with an R2 of 96.37%, an MSE of 4.02, and an
RMSE of 2.00, performed well, though slightly less effectively
than Random Forest and Extra Trees.

Extra Trees provided the best overall results with an R2 of
97.90%, an MSE of 2.32, and an RMSE of 1.49, showcasing
the model’s accuracy and low error variability.

Fig. 4. Evaluation metrics for motor UPDRS prediction

For the motor UPDRS, the Extra Trees model achieved the
best performance with an R² of 97.72%, an MSE of 1.39, and

an RMSE of 1.18, demonstrating exceptional accuracy and
low prediction error variability.

The Random Forest model followed closely with an R² of
97.29%, an MSE of 1.72, and an RMSE of 1.31, benefiting
from ensemble learning to enhance robustness and reduce
overfitting.

XGBoost delivered solid results with an R² of 95.25%, an
MSE of 3.02, and an RMSE of 1.74, though slightly less
effective than the Random Forest and Extra Trees models.

The Decision Tree model, with an R² of 92.99%, an
MSE of 4.46, and an RMSE of 2.11, showed relatively
lower performance, highlighting its limitations compared to
ensemble approaches. These results underline the superiority
of ensemble models like Random Forest and Extra Trees,
which leverage multiple decision trees to improve prediction
accuracy and robustness. Moreover, XGBoost, through its
boosting mechanism, achieves a balanced trade-off between
bias and variance, significantly outperforming the standalone
Decision Tree model.

C. Stacking Regression Results

To further enhance the performance achieved by the four
regression algorithms—Random Forest, Decision Tree, Extra
Trees, and XGBoost—a Stacking Regressor ensemble method
was implemented. Ensemble methods [14] are advanced ma-
chine learning techniques that combine the predictions of mul-
tiple base models, often referred to as ”weak learners” or ”base
learners,” to produce a final prediction that is more robust
and accurate. The primary goal of such methods is to reduce
generalization errors by compensating for the weaknesses of
individual models through their combination.

Stacking is an ensemble technique that combines the predic-
tions of multiple base models through a “meta-model.” While
the base models are trained on the full training dataset, the
meta-model is trained on their predictions. This setup allows
the meta-model to correct for the limitations of each base
model, often leading to improved overall performance. The
goal of using this method is to achieve more accurate and
reliable predictions by addressing the inherent variability of
individual models.

The implementation consisted of the following steps:
1) Importing Libraries: Necessary libraries, including

StackingRegressor and LinearRegression
from sklearn, were imported.

2) Defining Base Models: The previously trained re-
gression models—Decision Tree, Random Forest, Extra
Trees, and XGBoost—were defined as base models.

3) Defining the Meta-Model: A Linear Regression model
was chosen as the meta-model to aggregate predictions
from the base models.

4) Creating, Training, and Predicting: The
StackingRegressor was configured with the
defined base models and meta-model, trained on the
training dataset (X_train and y_train_total),
and used to make predictions on the test dataset
(X_test).



5) Performance Evaluation: The model’s performance
was assessed using using the same metrics through
which the 4 regression algorithms were evaluated.

Fig. 5. Performance metrics of the Stacking Regressor algorithm

The implementation of the Stacking Regressor demonstrated
significant improvements in predictive performance for both
motor_UPDRS and total_UPDRS. For motor_UPDRS,
the stacking model achieved an MSE of 1.13, an RMSE of
1.06, and an R2 of 0.98. Similarly, for total_UPDRS, the
model obtained an MSE of 1.86, an RMSE of 1.36, and an
R2 of 0.98. These results, shown in Fig. 5, confirm substan-
tial enhancements in predictive accuracy and generalization
capabilities. The reduction in MSE and RMSE, coupled with
a high R2, underscores the effectiveness of combining the
predictive strengths of individual base models through the
stacking approach.

V. DISCUSSION

Our methodology addresses several critical points identified
in a recent systematic review that examined articles recently
published [15]. Notably, only 38.9% of studies reviewed
explicitly described how hyperparameters were optimized. In
contrast, this paper provides a detailed description of the
preprocessing steps, including handling missing data, normal-
ization, and the division of data into training and test sets.
This transparency enhances the reproducibility of the study.

Another significant issue identified in the review pertains
to demographic imbalances in datasets: 68.1% of studies
exhibited imbalanced data, with few addressing this limitation.
While our dataset also presents a demographic imbalance, this
is justified by the epidemiological distribution of PD, which
predominantly affects older populations. The histogram of the
‘age’ feature reveals a skew towards patients aged 50–80 years,
consistent with PD’s prevalence in older individuals. This
demographic representation ensures that the model’s results
are highly relevant for clinical applications. However, we ac-
knowledge that the model’s reliability for younger age groups
may be limited, an aspect that warrants further investigation
in future studies.

By addressing key limitations in the existing literature and
providing a transparent workflow, this study contributes to
advancing the application of machine learning in neurodegen-
erative disease research.

CONCLUSIONS

This study leveraged machine learning techniques to analyze
vocal recordings from Parkinson’s Disease (PD) patients,
demonstrating the potential of these non-invasive tools for
early diagnosis and monitoring disease progression. By ex-
tracting features from the vocal recordings, we were able
to predict UPDRS scores, specifically targeting the motor
abilities and total scores, which are critical for assessing the
severity of PD symptoms. The Extra Trees model proved to
be particularly effective, with high R² values of 97.71% for
motor_UPDRS and 97.90% for total_UPDRS, showcasing
its ability to handle complex regression tasks. The implemen-
tation of the Stacking Regressor further improved prediction
accuracy, achieving R² values of 98.21% for motor_UPDRS
and 98.31% for total_UPDRS, highlighting the strength
of ensemble methods in enhancing model performance. The
dataset’s demographic imbalance, skewed toward older age
groups, mirrors the epidemiological characteristics of PD,
which predominantly affects the elderly. While this makes the
model highly relevant for the clinical context, future research
should explore its reliability for younger populations.
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