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Abstract— The notions of agent-based modeling and opti-
mization in the area of distributional supply chain manage-
ment are well established. The literature delivers quite many
potential solutions. Agent-based modeling and simulations are
quite common, however they mostly incorporate deterministic
approaches. Fully stochastic solutions are less frequent, while
additional incorporation of optimization introduces another
degree of complexity. This research covers two aspects of the
distributional transport between distribution center (DC) and
final store destinations: agent-based transport modeling and
trucks routing. Both, the model and the optimization incor-
porates knowledge about road network, driving times, traffic
jams and accidents. Custom congestion model is designed and
used. Optimization solution compares various vehicle routing
problem (VRP) and global optimization approaches to select
the most appropriate solution.

Index Terms— agent-based model; distributional transport;
traffic congestion stochastic model; vehicle routing problem;
global optimization

I. INTRODUCTION

Agent-based models (ABM) form important modeling
concept, which is now rather underestimated especially
in relation to the abused black-box neural-based machine
learning (ML) approaches. Both techniques, i.e. ABM and
ML, have their inherent advantages and disadvantages and
are characterized by their specific ranges of applications in
which they are the most effective. ML models are ideal
in modeling unknown processes using blind empirical data.
ABM models, on the other hand, are ideal for reflecting
complex processes consisting of many simple cooperating el-
ements, such as road traffic, evacuation systems, smart cities,
and human crowds behavior. They are ideal for modeling
human-operated systems, like picker-to-parts warehouses [1],
manufacturing plants [2]. Once we consider supply chain
management systems, it would be good to have single-
concept homogeneous framework, i.e. the entire system
model should use the same modeling technique for all sub-
processes.

Once the distribution centers (DC) or warehouses are rep-
resented in form of ABMs, then the distributional transport,
so called the “last mile” network, should be modeled using
multi-agent approach [3]. Initial reviews of ABMs utilization
for traffic and transportation process started in early 2000s
[4]. Computational abilities and new algorithm, introduction
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of agent modeling frameworks and graph-based technologies
now allows to use efficiently ABMs in the distributional
transport modeling [5]. Such models allow to incorporate
traffic system specific features and its uncertainties. In the
considered approach we use stochastic traffic congestion
model that uses four parameter kappa (K4P) distribution
[6]. Thus, the transport management system may incorporate
traffic incidents in route planning.

Unfortunately, alone transportation model does not solve
real life problems. However, only by using it in conjunction
with a dedicated optimization solution will make it possible
to solve real transportation management and planning prob-
lems.

Once we have an appropriate model, we may design a
decision support solution that minimize according goods
distribution travel time. This task is known under the name of
the vehicle routing problem (VRP) [7]. Literature shows vari-
ous approaches and optimization techniques that may address
this challenge [8]. We propose to use hierarchical algorithm.
This algorithm uses directed road network graph, which
includes only endpoint nodes with defined connections and
returns a list of trucks along with their sequences of endpoint
visits. At the first level, the algorithm is used to distribute
endpoints among trucks, while at the second level, it solves
the traveling salesman problem (TSP). Additionally, to create
a general graph from a detailed graph containing vertices
that represent elements such as intersections, shortest-path
algorithms are employed.The main paper’s contribution is in
the application of the homogeneous ABM approach to the
problems of vehicle routing and its optimization, while the
optimization solution itself is not targeted.

The paper starts with theoretical introductions that present
the agent model in Section II and utilized hierarchical
optimization concept in Section III. Next, Section IV presents
selected the most valuable results, while Section V concludes
the paper and shows identified research opportunities.

II. TRANSPORT AGENT-BASED MODELING

The developed agent model is implemented using the
Python and MESA framework [9]. Agent-based model struc-
ture consists of two elements: the environment in which
agents operate and the agents with their functions. Discussing
the environment, we must focus on three aspects: the geo-
spatial space in which the agents move, its updating mecha-
nism for accidents simulation, and the representation of time.
The directed graph G is defined as

G =<V,A > (1)



where V is a set of vertices representing the ends of
streets and intersections and A represents set of edges, i.e.
sections of road between intersections. Graph nodes store
information about the longitude, latitude, and the number of
road segments connected to a given node. On the other hand,
the edges keep information about:

• road ID in the OSM system,
• number of lanes,
• street names,
• the type of road (e.g. highway, residential road),
• maximum speed limit (if the OSMnx library connects

two sections of road with different speed limits during
built-in graph simplification, a list of these maximum
speed limits is included),

• whether the road is one-way,
• whether it is possible to turn around on it,
• crossing speed (if, as part of graph simplification, the

OSMnx library connects two road sections with differ-
ent speed limits, e.g., at the exit of a built-up area,
then this parameter is an average of these maximum
allowable speeds),

• length of the section (in meters),
• road section travel time in ideal conditions,
• actual travel time,
• modifier of the travel time.

The directed graph is generated from the road data con-
tained in the open source mapping (OSM) system using the
OSMnx library, which obtains data from the OSM API and
converts the information to the directed graph implemented
by the NetworkX library [10]. Directed graph allows to take
into account the direction of road movement, and allows to
distinguish which direction of travel has a slower travel time
due to the occurrence of any incident. Fig. 1a shows sample
graph generated using the OSMnx library.

The graph comes to the Spaces MESA development plat-
form module. Then, using the geographic coordinate data of
the stores, we find the graph node located closest to each
of the stores. Finally, the graph space is initialized. Fig. 1b
shows such a fully initialized graph space using a model
visualization tools from MESA. Unfortunately, such graph
does not preserve real geometry. Despite that inconvenience,
MESA solution ensures fast system operation and represents
road networks very well. Therefore, this solution is further
used.

We have to remember the the reality changes and the traffic
situation evolves due to various reasons. Some road sections
may be closed or due to the high traffic the traveling time
may significantly increase. The slowing down of traffic may
be caused by factors such as stops at traffic lights, traffic
jams or accidents, what makes travel times non-deterministic.
Thus, any ABM wishing to accurately simulate varying traf-
fic conditions must account for this randomness. Accidents
cause additional challenge. They are important as they slow
down traffic much more severely and do so predictably
longer than the others. Thus, two update mechanism are
designed: one responsible for updating the space in general

(a) Real road connection (b) MESA graph representation

Fig. 1: Graphs for small map section. Red dots denote stores

and the other responsible only for handling accidents.

A. General traffic conditions adaptation

Graph adaptations is done according to the procedure
shown in Fig. 3a. The terms “update period” and “accident
threshold”, which appear in it, are model parameters that the
user can define. We may specify general percentage of roads
that are updated every specified number of simulation steps.
The number k is thus defined as

k = round(|Road List| ·Update Per). (2)

The parameterization allows to adjust the number of
changes in the traffic volume to the simulation step time. The
term “base travel time“ reflects the ideal travel time, which is
the road length of divided by the maximum allowable speed.
The travel time modifier is a positive real number drawn from
the K4P random number generator [11]

f (x) =


σ−1(1− ky)(1/k)−1(F(x))1−h for k ̸= 0,h ̸= 0,
σ−1(1− ky)(1/k)−1F(x) for k ̸= 0,h = 0,
σ−1exp(−y)(F(x))1−h for k = 0,h ̸= 0,
σ−1exp(−y)F(x) for k = 0,h = 0,

(3)
where,

F(x) = {1−h[1− k(x−µ)/σ ]1/k}1/h, (4)

y =
(x−µ)

σ
. (5)

The probability density function is parameterized by four
factors: the shift µ , the scale σ and two shape coefficients:
h responsible for the left function tail and k, which affects
the right tail shape. The K4P distribution is a family that
includes many other probability distributions and is useful
in modeling phenomena with one-sided distribution, mostly
extreme ones [12]. Fig 2 shows adopted K4P shape.

B. Accidents model

The accidents model is programmed according to the
procedure sketched in Fig. 3b. The mechanism stabilizes the
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Fig. 2: K4P: µ = 1.164, σ = 0.461, h=−0.0235, k=−0.437

number of accidents and addressing around 1.5−2.0% of all
edges, which is quite realistic. The implemented mechanisms
rationally do their task without being over-complicated.
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Fig. 3: Graph adaptation mechanisms

C. Agents

Four types of agents are used in the system:
DistributionPoint, DeliveryTruckAgent,
DriverAgent, and TrailerAgent. Agent
DistributionPoint represents the warehouse locations,
i.e. both the DC distributing goods to stores and the stores
themselves. Agent DeliveryTruckAgent represents
the truck tractor, while DriverAgent the driver, who
runs the truck. By law, truck drivers are required to take
breaks while driving. Due to the complexity of the actual
regulations, it is assumed that drivers always have to take a
break of a length also specified by the user. The last is the
TrailerAgent agent, who represents trailers with cargo.
It gives us an advantage to swap an emptied trailer for a
full one at the regional warehouse.

III. DISTRIBUTIONAL TRANSPORT OPTIMIZATION

Having operational distribution transport ABM, we may
come to the next step: goods delivery optimization. The

problem, for a given number of truck nt ∈N,nt > 0, defined
end points and single starting point (with index n+1) P =
{p1, p2, . . . , pn, pn+1}, which are located in the vertices of a
directed graph G=(V,E), where V = {v1,v2, . . . ,vn,vn+1},
for which the edges are weighted according to the travel time

E = {e1|2, . . .e1|(n+1), . . . ,e(n+1)|1, . . . ,e(n+1)|n} (6)

T = {t1|2, . . . t1|(n+1), . . . , t(n+1)|1, . . . , t(n+1)|n} (7)

is to evaluate a list of endpoints for each truck, such as

L = {L1 ⊆ {l1|1, . . . , l1|nl1
}, . . . ,Lnt ⊆ {lnt |1, . . . , lnt |nlnt

}},
(8)

for ∀x,y,x′,y′ (lxy ̸= lx′y′ , n ≥ lxy > 0, lxy ∈ N, (x,y) ̸=
(x′,y′) and ∑

nt
i=1 nli = n, where l takes the value of point p

index, for function fg defined as

fg(L) = max{ fl(L1), fl(L2), . . . , fl(Lnt )}, (9)

where

fl(L j) =
|L |−1

∑
i=1

[tlil j(i+1) ]+ t(n+1)l1 + tl|L |(n+1). (10)

The problem is visualized by sample graph in Fig. 4. It
has vertices with end point, while last vertex with number
10 denotes starting point (distribution center) with

V = {v1,v2, . . . ,v9,v10}, (11)
P = {p1, p2, . . . , p9, p10}. (12)
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Fig. 4: Sample graph problem visualization

To assignment end points to each truck we need to
minimize certain cost function fg(L). This function directly
depends on L, i.e. how the values L1, . . . ,Lnt are selected.
All endpoints indexes ore in the lists L , so we understand
the search space as

SL = {L1,L2, . . . ,LnL}, (13)

where L takes values from

L1 = {L1 ⊆ {l11, . . . , l1nl1}, L2 = /0,Lnt = /0}}, (14)

to

LnL = {L1 = /0, L2 = /0,Lnt = {lnt 1, . . . , lnt nlnt
}}, (15)



For known number of vertices n and number of trucks nt ,
we may use Stirling numbers [13] regarding also empty sets
to write

nL =
nt

∑
k=1

[S(n,k) ·
(

nt

k

)
], (16)

where nL is a number of possible values of L.
The assumptions allow to define the task to be solved,

however the initial graph does not include endpoints only.
Thus the second problem must be defined, i.e. the evaluation
of the best path between endpoints. Let’s consider the base
task of riding between two vertices. Thus, for a given set
of vertices T = {t1, t2, . . . , tm} and edges E = {e1,e2, . . . ,em}
with weights (travel times in seconds) T = {t1, t2, . . . , tm},
selected starting vertex vs and end one ve we need to find out
the optimal linking path. We need to run these calculations
with the shortest time. Let denote the path as

R = {r1,r2, . . . ,rnr}, (17)

where ep is the selected edge index, we obtain the cost
function to be minimized

fp(R) =
nr

∑
i=1

tri (18)

The solution contains undefined number of edges (one or
more), what depends on the weights. The solution is orga-
nized in a hierarchical way as shown in Fig. 5.
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Fig. 5: Hierarchical solution scheme

A. Global optimization problem

The global optimization problem can be solved in many
ways. Due to its nature, several approaches can be discarded.
First, it’s impossible to review all solutions because the time

required to do so, even for a relatively small number of
endpoints and trucks,expands dramatically and is generally
unrealistic for real problems. Next, it is unreasonable to
assume that the minimized cost function would have only
one local optimum, which would also be the global one.
Thus simple fastest descent or simple gradient algorithms are
not considered. The best group of algorithms for the global
task therefore seems to be heuristic ones, of which simulated
annealing [14] and A* [15] are assessed.

The simulated annealing is a well-known stochastic search
algorithm. We apply it to look for a predefined solution
space, where a single point is represented as a list of
endpoints with given indexes. The algorithm requires to
define the neighborhood for a point located in the searched
space. A neighbor of a given point is defined as any point that
differs from the current one by changing the assignment of
one store to another truck. Starting point is selected randomly
from the search space. It achieves greater confidence that
the space is well explored during several experiments. In the
implementation, the best found point is saved, so it is not
lost when finding potentially worse solutions.

The A* algorithm is usually used to browse a graph to find
the cheapest path. Thus the task must be reviewed from a
different perspective, i.e. the previously formulated problem
has to be re-translated to the tree search problem.

B. Traveling salesmen problem

The traveling salesmen problem requires different ap-
proaches. This works compares three algorithms: the near-
est neighbor (NNA), greedy algorithm (GrA) and the
Christofides algorithm (ChA). The nearest neighbor algo-
rithm uses below procedure:

1) Take general directed graph.
2) Take starting vertex (trucks start point) and set it as

actual.
3) Add actual vertex to the list.
4) For an actual vertex take the cheapest edge to unvisited

vertices.
5) Define the vertex as visited and set it as actual.
6) If all vertices are visited, then add the initial vertex at

the end of the list and return the list.
7) Repeat points from 3 to 6.

In the greedy algorithm, as the name suggests, the ap-
proach tries to include the shortest available edges in the
path. Unlike the nearest-neighbor algorithm, here there are
no parameters such as the starting point that would force the
path determination to be run repeatedly. This is an algorithm
that is used more widely, and is sometimes used with minor
modifications, but for the purposes of this work, the focus is
on the classic version of [16].

The Christofides algorithm [17] is compared as a third
option. Though the algorithm is relatively complex, it is
mathematically proven that the cost to find path is not be
greater than the cost of the path in the smallest spanning
tree multiplied by 1.5. Just as in the greedy algorithm
it is assumed that it’s better for the algorithm to take a



non-directed graph. We use Prims algorithm [18] to find a
minimum spanning tree.

C. Graph preprocessing

Previously described methods rely on important assump-
tion, that a graph contains endpoints at each vertex. How-
ever, the map generated in Section II is far from such
an assumption. Thus, an original map detailed graph with
multiple intermediate vertices between endpoints must be
pre-processed. Moreover, for the purposes of the ABM, we
need to evaluate exact routes for each truck, not just the
nearest endpoint to reach. The path should also change
dynamically, responding to varying model parameters, i.e.
changing travel times – edges’ weights.

The classic approach is to use the A* algorithm, which
finds the cheapest path in a graph. The algorithm does
not review all possible paths, which might be utterly time-
consuming, but only those indicated as potentially better.
The algorithm is similar as in the global optimization task,
however the graph structure remains unknown.

Dijkstra’s algorithm is a well-known algorithm for path
finding. It differs from the A* algorithm in assumptions, as
it finds the cheapest path for each vertex in the graph [19].

IV. EXPERIMENTS AND RESULTS

All the experiments are performed on a graph representing
the city of Poznań and its surroundings. The detailed graph
consists of 17712 vertices and 40958 edges. In addition,
109 endpoints and one starting point (DC) are given, which
naturally indicates that after reprocessing, the general graph
will contain 110 vertices, with all edges defined with positive
weights between them. All calculations are carried out on an
Intel core i5 4590 processor at 3.7GHz and 16GB of RAM.

A. Traveling salesman problem (TSP) – results

The performance, execution time and associated problems
are compared for three selected algorithm. The task is to
optimize the path for a single truck with a varying number
of endpoints. The algorithm is executed once, as the task is
deterministic. The algorithms are compared in Fig. 6, which
shows how estimated travel time is affected by the number
of endpoints. Execution times are compared in Table I.
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Fig. 6: Comparison of the TSP algorithms

TABLE I: TSP solution execution times

algorithm: nearest neighbor greedy Christofides
mean time [s]: 1.24 ·10−3 3.08 ·10−2 4.62 ·10−2

total time [s]: 1.36 ·10−1 3.35 5.04

The comparison shows that the Christofides algorithm
solves the problem the most effectively. The nearest neighbor
and greedy exhibit better results in case for smaller graphs
with less than 25 endpoints. These routes are crucial for
the algorithm. We also observe that execution times favors
especially the nearest neighbor algorithm.

B. Global optimization – results

Global optimization algorithms cannot be evaluated inde-
pendently, as they use the cost function optimized by the
TSP algorithms. Therefore, their comparison should be done
in combination with selected TSP algorithm. At first, we
compare the estimated time of accomplishing the simulations
depending on number of trucks and the type of the cost
function, i.e. the TSP technique. Fig. 7 compares the sim-
ulated annealing algorithm. Execution times are compared
in Tables II and III. The more complex the algorithm is, the
longer the calculations take on average. The best algorithm in
terms of optimization quality for the A* algorithm along with
acceptable time is the nearest neighbor algorithm. As for the
simulated annealing, the results are very similar. Depending
on the number of trucks, the greedy, nearest neighbor, or
Christofides algorithm give better results. Surprisingly good
results are achieved by the nearest neighbor algorithm.
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Fig. 7: Simulated annealing with different TSP algorithms

TABLE II: Simulated annealing execution times [s]

nt 3 5 7 9 11 13 15 17 19 21 25
NNA 2 2 1 1 1 1 1 1 1 1 1
GrA 41 24 17 14 12 11 10 10 9 9 9
ChA 75 44 34 33 28 28 29 27 27 29 29

C. Graph pre-processing results

The pre-processing approaches are compared in Table IV.
We see at that point the superiority of Dijkstra method.
However, in task, in which we are looking for a path from a
specific vertex A to B, the A* algorithm, which heuristically



TABLE III: A* execution times [s]

nt 3 5 9 11 15 17 21 25
NNA 1 4 15 12 24 32 45 65
GrA 381 158 333 616 1331 2022 2559 3519
ChA 75 223 533 745 1120 1478 4352 3748

looks specifically for one path, gets an advantage. The
difference for one truck might be negligible, but for 30 trucks
it matters. Concluding the A* algorithm is indicated as the
best fitting to that task.

TABLE IV: Time of general graph generation

graph size A* Dijkstra
40958 edges, 17712 vertices 577,8s 11,2s

7948 edges, 3315 vertices 2,0s 0,2s

D. Dynamic optimization

Finally, we have conducted the experiment with dynamic
operation solving the problem in case of an accident. Fig. 8a
shows the optimal route before an accident, while Fig. 8b
after it. After the accident happened the algorithm bypasses
the edge, with weight 1102.5, and chooses a detour. The
edge is left in the figure so that one can see the difference.
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Fig. 8: Visualization of dynamic optimization with accident

V. CONCLUSIONS AND FURTHER RESEARCH

The paper presents the results of the project that aims
at building dynamic agent-based model environment for
distributional transport modeling. Additionally, it includes
the dynamic optimization algorithm, which allows to be
applied during online vehicle routing task.

The system operates with embedded uncertainties that
allow to model slowly varying traffic scenarios and rapidly
happening accidents that may close the road. It is especially
important for truck drivers, as they cannot make sharp u-turns
or turn back. They must remain stuck till the congestion is
cleared by road services in case of the road blocked.

The results are confirmed with the real road network
for the city of Poznań (Poland) and its surroundings. The
potential of the ABM system is very large. The next steps

include its combination with the distribution center agent-
based modeling to solve coordinated task of warehouse
operation and goods transportation to final stores/customers.
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