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Abstract— Simulation constitutes a crucial part of designing
and operating logistics warehouses. An agent-based modeling
(ABM) allows to capture various elements of such a system,
which may include human workers, material-handling equip-
ment and different kinds of autonomous subsystems. Warehouse
operate in a complex supply chain system and must meet its
requirements. Customers expect higher responsiveness, which
translates into completion times shortening. Robotic systems are
deterministic, while human-based picker-to-parts warehouses
are not. This paper presents novel agent-based stochastic dis-
tribution center (DC) model, which uses distributional gradient
boosting machine learning (ML) to introduce pickers’ uncer-
tainties associated with human behavior. Obtained modeling
approach is validated using full-scale DC environment and real-
time warehouse data.

Index Terms— agent-based model; warehouse; stochastic
models; picking time, distributional gradient boosting

I. INTRODUCTION

Agent-based models constitute strong modeling concept,
which is now firmly underestimated especially in relation to
the fashionable and overused neural-based machine learning
models. Both approaches, ABMs and MLs, are characterized
by their inherent advantages and disadvantages. Each type of
modeling has its own range of applications in which it is the
most effective. ML models are ideal for modeling unknown
processes using blind empirical data sets. ABM models, on
the other hand, are ideal for reflecting complex processes
consisting of many simple cooperating elements, such as road
traffic, evacuation systems, smart cities, and human crowds
behavior. Thus, they are ideal for modeling human-operated
warehouses [1], [2].

Although current research focuses on robotic and au-
tonomous warehouses or mixed layouts [3], manually op-
erated CDs are more common than automated warehouses:
80% warehouses in Western Europe are manual ones [4].
ABM application to the human operated DC centers is quite
common [5], though they have to face various stochastic
issues [6]. Uncertainties are associated with of human behav-
ior, which erratic and unrepeatable, stochastic demand prop-
erties, varying external supply chain fluctuations, resources
seasonality, accidents, natural disasters ot terrorism [7].

This paper addresses the subject of human picking process,
which inherently depends on varying human performance.
The analysis of real data shows that pickers may differ
significantly, with as much as a fourfold difference. Such
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a large spread of lead times inside the warehouse clearly
shows the need to use proper stochastic models, as a de-
terministic approach can lead to serious inaccuracies. Each
worker must be modeled in a different way. We propose
to use the eXtreme Gradient Boosting for Location Scale
and Shape (XGBoostLSS) [8], which extends Generalized
Additive Models for Location Scale and Shape (GAMLSS)
[9] by using gradient boosting.

Above formulation of the probabilistic forecasting allows
to model the entire conditional distribution of a univariate
picking time. It allows to use the same model type for each
picker, differing in its parameters, which can be identified
using historical picking time data gathered as time logs
from the Warehouse Management System (WMS). The XG-
BoostLSS approach is incorporated into the warechouse ABM
proving not only the picking time model effectiveness, but
also high performance of entire warehouse model.

The proposed modeling approach is validated using full-
size DC and real picking data. Following Section II describe
methods and algorithms used during the modeling. Next
the application of the XGBoostLSS to the picking time is
investigated in Section III, while Section IV presents the
final warehouse model. Section V concludes the paper and
shows possible research opportunities.

II. AGENT BASED MODELING

The developed agent model is implemented using the
Python and its libraries. Initially the works stared from the
evaluation of existing platforms, like Mesa [10] or NetLogo
[11], but due to their constraints it was decided to develop
custom own solution.

The ABM consists of three main elements: agents, their in-
teractions and the environment of their operation. The agents
are generally human workers in the warehouse. They may
perform a set of atomic activities, while each of them may
be characterized by different set. It is analogous to the real
warehouse, where each worker has certain responsibilities
and certified authorizations. Generally, these atomic activities
may include the following actions: moving (on foot or using
a forklift), picking up and putting away a forklift, picking
the good from the rack and placing it on the carrier, lifting
and putting down the pallet. perform wrapping, printing and
applying labels, performing up-and-down operations, and
many others. The list is open and can be extended if needed.

These basic activities are characterized by a specific
execution time, which depend on workers experience. This
time may be fixed (deterministic), randomly drawn from
selected distribution or generated by XGBoostLSS stochastic
predictor. Observation of real data proves that each execution



time varies with time disclosing outlying observations [12]
that appear due to system errors or external reasons. Time
models are calibrated according to historical data., so the
limitation to the deterministic values is an oversimplification.
Authors use distributions, like for instance exponential or
Poisson [13].

The use of stochastic prediction allows to use the family
of distributions and obtain random times according to the
specific human operation profile [14].

Moreover, these times does not have to be constant and
may vary with time. In such a case we may model workers
tiredness or self-learning [15]. It is also possible to allow
agents’ self-learning using dedicated machine learning ap-
proaches.

Additionally, their movement velocity and speeds of fork-
lifts are set according to the historical data and carriers
specification.

Their interactions are relatively simple as there are no
operations requiring simultaneous cooperation of two work-
ers in the warehouse. Generally, all actions are performed
by one person (single agent) and the interactions are on
the causal basis, i.e. once one activity is accomplished the
new performed by the same or other agent may be started.
For instance as one pallet is filled and put in the waiting
place it may be picked by another agent, labeled and taken
for wrapping. The scheduling of these activities, tasks and
process is done according to the general schedule, which
in real distribution center is managed by the warehouse
management system (WMS).

The warehouse processes are implemented in a three-level
hierarchical agent-based model structure, which is presented
graphically in Fig. 1.
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Fig. 1: ABM warehouse model structure

The functionality of each process layer is organized as

follows:

— Atomic activities are the basic components of the
model. They are conducted by a single agent (by a single
person in the real warehouse). They are characterized by
a specific execution time, which can be deterministic or
stochastic. Parameters of these atomic activities can be
set separately for each agent. Human operator walking,
pallet lifting or pull down are examples of such activi-
ties.

— Tasks consist of conditional causal relationships be-
tween atomic activities. Similarly to them, tasks are

performed by a single agent as well. Their realization
time depends on times of component activities, so it
may be deterministic or stochastic. Pallet picking, truck
loading or unloading are perfect examples of tasks.

— Processes constitute top level model entity. They repre-
sent conditional causal relations between tasks (one or
many) or atomic activities. A given process is conducted
by one or many agents. Similarly to tasks, process may
be deterministic or stochastic depending on the defini-
tion of utilized activities. Truck transport completion is
an example of the process.

Agents operate (move) in defined geo-spatial environment,
which is constructed according to real warehouse layout.
Fig. 2 depicts sample layout of a distribution center. In
practice, the layout is build using warehouse construction
drawings with real dimensions.

III. XGBOOSTLSS PICKING MODEL

Stochastic definition of the picking execution times, or any
operation times or movement speeds can be deterministic,
drawn from a predefined probabilistic density function (PDF)
or may be customized using ML model — XGBoostLSS.

The research on modeling of fundamental processes that
are responsible for generation of a given observations is
a guiding principle in statistics and ML. These processes
should be identified in as much detail as possible. Thus,
the ultimate regression goal should be to find out the whole
conditional distribution Fy(y|x) of the process behind the
data. The estimation should not be limited only to the con-
ditional mean E(Y|X = x), assuming that they are constant.
It should incorporate in modeling as well higher moments of
this conditional distribution [16]. Classical regression models
that use ¢, norm as a cost function are not enough, not
even talking about its zero breakdown point and lack of
robustness to even a single outlier [17]. Moreover, the ¢,
norm is simply equivalent to Gaussian normal distribution
with constant variance.

We need to model the entire conditional distribution.
Recently the research on probabilistic time series forecasting
started to investigate this area, especially taking into account
the context of deep learning. Now, model parameters are
estimated (learned) across a set of related time series, instead
of modeling each time series individually [18].

XGBoostLSS uses ideas extends concepts of both XG-
Boost [19] and LightGBM [20]. They are treated as com-
putational backbones and remain largely unchanged. XG-
BoostLSS enables to model all conditional moments of some
PDF or to approximate the conditional cumulative distri-
bution function (CDF) using Normalizing Flow (NF) [21].
The method is entirely likelihood based, i.e. evaluation and
sampling are exact and efficient using likelihood functions,
which are easily dealt with.

The ABM operation time perspective requires to have a
PDF function for a given human operation. Moreover, it’s
good to have it for each worker separately. The use of
quantiles might be enough for modeling and risk analysis.
However, the shape of the respective PDF or CDF gives



Fig. 2: Simulated warehouse layout: dark green blocks — shelf racks, light green backgrounds — sub-warehouses, gray floor

— waiting areas, red rectangles — gates

additional insight and understanding of the atomic activities
and allows better design. The use of the XGBoostLSS
extends classical PDF fitting approach shown in Fig. 3a. We
see that it is not clear, which distribution should be selected.

The normal distribution certainly does not give any rea-
sonable results and extreme distributions should be used. In
this case, generalized extreme value (GEV) or potentially
log-normal seem the best, although other authors suggest an
exponential distribution. The family of kappa (four-parameter
kappa) PDFs does not guarantee a certain solution either.
The use of XGBoostLSS as in Fig. 3b closes the discussion
of which distribution to choose by facilitating the modeling
process and making it independent of uncertain decisions.
In the presented example XGBoostLSS selects between
Weibull, log-normal and Gumbel selecting log-normal as the
best candidate.

IV. WAREHOUSE MODEL

The study is performed using real retail distribution center
located in Europe. Fig. 2 presents the warehouse layout. The
storing area, equipped with single-level racks consists of five
zone, in which different groups of products are stored. These
zones (sub-warehouses) are distinguished with different light
green shades. The shelf racks are marked as dark green
rectangles. Gray sections represent various waiting zones,
like for instance empty or already filled pallets, labeling or
wrapping zones, or storage loading zones close to truck gates,
which are denoted as red squares.

The distribution center is quite large as it handles several
dozen of truck delivering goods to final customers on daily
basis. A few hundreds people are employed at the warehouse
ensuring its continuous operation on a 24-hour basis. More
than half of them participates in the picking process, which
is the focus of this study. Pickers operate forklifts that may
pick one or two pallets depending on the sub-warehouse. We
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(a) Classical PDF fitting

(b) XGBoostLSS based PDF

Fig. 3: Stochastic modeling of the picking time

assume that each truck carries on maximum number of 33
pallets. However, we have to keep in mind that the standard
picking process incorporates less number of carriers as some
space must be left for other goods that are booked in a
different way. The study focuses on main picking process and
other auxiliary operations, like the replenishment, wrapping,
labeling or quality control are excluded.

There are four types of carriers: wooden pallets and



half-pallets, freezer containers and storage boxes. Each of
two-pallets forklifts generally carries two pallets, four half-
pallets, up to 4 containers and boxes, or any available
combination of them.

The goods are grouped into carriers by the WMS system.
Furthermore, the carriers are grouped into the batches, i.e.
for one forklift with human operator. Picker rides across the
warehouse, collects the goods and fills carriers. The plan how
to ride through the warehouse, what goods should be picked
and in which order is decided by the WMS and passed to
the human worker using voice system or mobile panel.

Allocation strategy of goods to individual carriers and
carriers to the batches is not in focus of this paper. This
work focuses on the representation of real picking process
using the agent modeling framework. This ABM simulation
study considers preparation of pallets for 30 truck transports.
Parameters of each considered transport picking process is
described in Table 1. Each transports is grouped into certain
number of batches and carriers. The number of visited
shelves during the picking is also shown in the table. We
assume that all shelves have enough products to be picked up
and no replenishment is required. Summarizing, 448 picking
paths are modeled.

TABLE I: Parameters of simulated truck transports

Id | shelves | batches | pallets half-pallets  containers  boxes

1 740 14 16 1 4 1
2 923 17 17 4 3 1
3 725 14 13 4 4 1
4 851 21 18 2 7 2
5 682 12 13 2 4 1
6 718 16 21 2 4 1
7 748 15 16 3 5 1
8 775 16 19 2 5 1
9 734 16 18 5 5 1
10 738 15 18 3 5 1
11 721 14 15 3 4 1
12 864 16 21 2 6 1
13 786 14 17 4 6 1
14 769 14 15 3 5 1
15 718 14 16 1 6 1
16 772 18 11 8 5 2
17 894 20 15 4 5 3
18 751 18 13 4 8 3
19 805 16 17 5 4 1
20 735 14 15 3 4 1
21 715 19 13 4 4 2
22 742 17 13 5 6 2
23 822 13 12 4 4 1
24 826 19 14 7 7 2
25 802 22 17 6 6 2
26 904 19 18 6 8 2
27 740 19 14 6 6 2
28 796 18 14 7 6 2
29 715 15 18 3 4 1
30 754 14 18 1 5 1

We also have to be aware that each human picker assigned
to the process is characterized by different parameters. New
ones perform picking relatively slowly. Despite the fact that
all use the same equipment, they drive their forklifts slower,
it takes more time for them to find certain shelf and they
stack the goods on the carrier with more attention. They
make errors more frequently, which may require repetition

of some actions. Experienced pickers may perform the same
atomic activities even four times faster. The above shows that
the modeling of picker-to-parts human-operated warehouse is
challenging. Assumption about fixed speeds and operations’
times oversimplifies the task providing unrealistic results.

A. Agent warehouse modeling results

Presentation of the ABM results is split into two stages:
stochastic modeling of the picking time and other human
atomic activities, and an overall model of the picking process.

1) Picking time model: The time of human operations
is modeled using stochastic XGBoostLSS framework. There
are several types of human activities modeled separately in
the system, while the separation is not only in an action abut
also distinguishes workers. The analysis starts from drawing
histograms. Single operation of product picking is presented
in more details as an example of the modeling process.

Fig. 4 shows a histogram of picking activity consolidating
data for all workers and all picking activities within the scope
of the modeling case study. As one can see, the histogram
is clearly one-sided with a very long right tail. As this
histogram consolidates performance of all workers, it loses
the distinction between the effectiveness of individual people.
Therefore, two histograms for individual workers, the fast
and the slow, are shown in Fig. 5.
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Fig. 4: Integrated histogram for picking time of all available
workers
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Fig. 5: Detailed histograms for picking time for two workers:
(A) the fast and (B) the slow one



We also observe long tails in both histograms, though
less significant. There are two reasons explaining these tails.
First, the obvious varying effectiveness of human operation
due to the fatigue, interaction with other people, problems
in picking products from shelves and stacking them on the
pallet, distraction and more. The second reason is due to the
data collection system which based on “shooting” bar-codes
with the reader, which generally can be done in different
moments of the picking itself, for instance before or after,
and may be forgotten and done after the return.

2) Picking process model: Once the problem of picking
operations’ times estimation is solved, the entire model is
run. Fig. 8 shows traces of selected three picking tasks drawn
on the basis of historical WMS data. As the warehouse sys-
tem does not control exact movement of forklifts/operators
their path is only determined by the starting and ending
shelves for each atomic picking. The paths and walking
distance as such cannot be used to assess model performance.

Therefore, the model is confronted with the reality com-
paring the picking time between processes. We have remem-
ber that the model is stochastic, so single model execution
gives random results. The Monte Carlo experiment is used
to assess the model. The model is run N = 99 times and the
median batch picking time 7, is used to compare

fop = median (fop_’,-) ,i=1,...,N. (1)

Next, the time is compared with respective real operation
time #,, obtained from the warehouse WMS system. The
comparison cannot be done on the level of each task, it’s
conducted on the level of batches. It’s due top the fact
that the assignment of free pickers is done using simula-
tions, not using real data. We have to be aware that this
comparison in not perfect, as our ABM model addresses
only base picking operations, discarding auxiliary activities.
This auxiliary tasks may affect the picking process as for
instance causing heavier traffic in side of the distribution
center. Moreover, the assumption about full stack with no
need of the replenishment may cause additional differences.
The simulation time obtained as a median from N = 99 runs
of the ABM model gy, is compared with the real time of
these picking operations. We calculate median error of all
the considered batches.

Table II summarizes obtained results, while Fig. 6 vi-
sualizes them. The error are plotted ion the ordered form
related to the batch picking time. We clearly observe that
short batches are not represented properly, while in case of
the longer ones the error starts to stabilize on small values.
It is due to the fact that in real case the log data from the
WMS system are highly disturbed with the way the picker
operates the system. They often take shortcuts in the way
they use the system and log operations.

TABLE II: Picking times for real process and mean ABM

[ single order  multiple orders

all task 17.1% 19.0%
tasks > 500 sec | 5.3 10.5

——single order simulation

1400% ~——multiple orders simulation

——0 % error

median relative ABM error

task length in seconds

Fig. 6: Ordered median errors of the ABM model

It’s well seen in Fig. 7, which shows batches longer
than 500 seconds, which actually cover the majority of
operations. In such a case we obtain single digit errors, which
are acceptable and promising. Adding of all warehousing
activities should further improve the modeling accuracy.

——single order simulation
——multiple orders simulation

——0 % error

median relative ABM error

task length in seconds

Fig. 7: Ordered median errors of the ABM model for tasks
longer then 500 seconds

V. CONCLUSIONS AND FURTHER RESEARCH

This study presents the results of the agent based model-
ing of the picker-to-parts human operated large distribution
center warehouse. The system is modeled on the level of
basic picking operations and simulated for the real scale and
complex warehouse.

Obtained results are good. They are promising as the
simulation considers only basic picking operations. Adding
of all auxiliary tasks together with comprehensive model fine
calibration should allow to obtain a credible model useful for
further optimization studies.
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