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Abstract— Simulation constitutes a crucial part of designing
and operating logistics warehouses. The use of agent-based
models (ABM) allows to incorporate human workers specifics
in the modeling framework. Warehouse operate in a complex
supply chain system and their operation should not be a
bottleneck for other processes. Thus, warehouse operation must
be predictable, repeatable and finally optimal. Order picking
is the main process in any warehouse, being the most time
consuming and therefore the most costly. This study addresses
the issue of order picking process in the real scale warehouse.
Optimization results are compared with the existing picking
practice generated by implemented Warehouse Management
System (WMS), and with common routing strategies, like S-
shape or the largest gap. It is shown that evolutionary algorithm
allows to improve the picking routing problem giving clear
benefits.

Index Terms— agent-based model; warehouse; order picking;
routing optimization; evolutionary algorithm; routing strategies

I. INTRODUCTION

This paper focuses on the human-operated picker-to-
parts warehouse optimization. It is challenging task and
still important despite rising popularity and increasing share
of robotic and autonomous warehouses or mixed layouts
[1]. Manually operated distribution centers (DC) are more
frequent than automated: 80% warehouses in Western Europe
are using manual operation in the picker-to-parts way [2], [3].

Agent-based models constitute strong concept, which is
now underestimated in relation to the fashionable neural-
based machine learning models. Both approaches, ABM ap-
proach ideally suites complex processes consisting of many
simply operating components, like road traffic, evacuation
systems, smart cities, and human crowds behavior. Therefore,
agent framework is ideal to model human-operated DCs
[4], [5]. ABM application in picker-to-parts warehouses is
quite popular [6], though it must face stochastic challenges
[7]. Transparency of agent-based framework is useful to get
insight into internal processes and in building warehouse
simulators.

However, research should not be limited to process sim-
ulations. Having a model, nothing prevents the application
of optimization algorithms, which could help find optimal
strategies for managing the process according a certain qual-
ity indicator and with the imposed constraints. Warehouse
optimization must be driven by real operational challenges.
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Any methodical optimization approach should take into
account the following issues [8]:

— product and order flow through the operations and
supply chains;

— utilization of the facility and storage locations;

— equipment, automation, and available storage of the
facility;

— product slotting, location profiles, and management of
bin locations;

— auxiliary tasks like kitting, wrapping, labeling, repack-
aging, etc.

— compliance programs for inbound goods;

— WMS software used in the operations;

— inbound and outbound gates, and the staging space;

— organizational structure;

— benchmarks and metrics for process management.

It’s all about driving down costs and gaining efficiencies to
handle more throughput and better service the customer. To
meet the above optimization may address improved space
optimization, and labor costs, warehouse automation and
proper use of in-house existing software. This work focuses
on a single element of the overall approach — the picking.
More efficient picking leads to higher throughput while
reducing labor costs.

Above business goals can be re-translated into technical
challenges that may be incorporated into the research, which
as a consequence should bring improvement solutions. Thus,
the academia identifies the following optimization research
areas connected to the general picking task [9], [10]:

1) order picking (routing),
2) picker assignment,

3) order batching,

4) batch sequencing,

5) and location assignment.

Order picking process consist of many manual operations
that consume a lot of time. The minimization of the picking
travel distance is crucial for the warehouse management, as
the picker’s travel distance directly translates into the order
picking time. This time is made up of many components,
such as taking an empty carrier, planning the route, travel
time to the next storage location, time to find the right
product on the shelf, picking it up and placing it safely
on the carrier, wrapping it with stretch film, if necessary,
and “shooting off” the bar-code. Among them, travel times
between locations make up at leat 50% of the total picking
time. The share of other components is rather minor and is
frequently neglected [11].

Next issue is the relation between the picking route



distance and its time. There is general assumption in the
literature to consider times of these component constant [12].
Moreover, once we consider the forklift speed constant as
well, we result in a fact that the picking time is equivalent
to the distance and time minimization is achieved by the
distance optimization. Unfortunately, these times are not
constant, and the forklift speed as well. Experienced pickers,
perform know better the warehouse layout, have more skills
and drive faster. Therefore the total difference between skill-
ful picker and the new one, may be even fourfold. However,
the batch picking process is always performed by a single
picker and therefore his entire order picking time can be
considered equivalent to the distanced being traveled. The
picker assignment process would violate this assumption, but
current research does not take it into consideration.

This work focuses on basic and fundamental warehouse
picking activity, i.e. on order routing. We use global opti-
mization evolutionary algorithm to optimize the routing path
of the picker. We show that optimization helps to minimize
the route lengths an as a consequence the picking time.
Optimization results simulated using agent-based warehouse
model are compared with real paths obtained from the WMS
of real scale distribution center located in Europe. Moreover,
the assessment includes two popular heuristic strategies,
i.e. S-shape or the largest gap. Section II describes used
algorithms and methodologies, while Section III describes
the distribution center case study. Main results are described
in Section IV and the paper is concluded with observations
included in Section V.

II. RESEARCH AREAS

Considered analysis consists of two main components: the
agent-based warehouse model and an optimization routine
that improves order picking schedule. These two research
areas are described below.

A. Agent based modeling

Applied agent model is implemented using Python lan-
guage and its libraries. It consists of three main elements:
agents, their interactions and an environment, in which they
operate. The agents are generally human pickers in the
warehouse. They perform certain atomic activities. Each one
may be characterized by a different set of activities, similarly
to real warehouse, where each persons has certifications
for certain operations. These activities may be various,
like moving (on foot or using a forklift), picking up or
putting away a forklift, picking any good from the rack and
placing it on the carrier, lifting and putting down the pallet,
wrapping, printing and applying labels, performing up-and-
down operations, and many others. The list is open and can
be extended if needed.

Each basic activity are described by its execution time,
which generally depends on workers skills. In our implemen-
tation this time is stochastic being generated by XGBoostLSS
model [13]. Stochastic prediction gives homogeneous mod-
eling framework of random times according to human skills
profile. Moreover, it allows to capture outlying observations

[14] that appear due to system errors or external reasons,
pickers’ tiredness or self-learning [15]. Time models are
calibrated according to historical data.

Interactions between agents are relatively simple. There
are no activities requiring concurrent operations. Actually,
all tasks are performed by one agent and they are simply
sequenced. For instance as one pallet is filled and put in the
waiting place it may be picked by another agent, labeled
and taken for wrapping. The scheduling of these tasks is
done according to the real schedule managed by the WMS.

The picking process is implemented in a three-level hier-
archical ABM structure, presented graphically in Fig. 1.
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Fig. 1: ABM warehouse model structure

The functionality is described below:

— Atomic activities are the basic components of the
model. They are conducted by a single agent (by a single
person in the real warehouse). They are characterized by
a specific execution time, which can be deterministic or
stochastic. Parameters of these atomic activities can be
set separately for each agent. Human operator walking,
pallet lifting or pull down are examples of such activi-
ties.

— Tasks consist of conditional causal relationships be-
tween these activities. Similarly to them, tasks are
performed by a single agent as well. Their realization
time depends on times of component activities, so it
may be deterministic or stochastic. Pallet picking, truck
loading or unloading are perfect examples of tasks.

— Processes constitute top level model entity. They repre-
sent conditional causal relations between tasks (one or
many) or atomic activities. A given process is conducted
by one or many agents. Similarly to tasks, process may
be deterministic or stochastic depending on the defini-
tion of utilized activities. Truck transport completion is
an example of the process.

Agents operate in some designed geo-spatial environment,
which is constructed according to real warehouse layout.
Fig. 2 depicts such a layout of sample distribution center.
In practice, the map is build using warehouse construction
drawings with real dimensions.

B. Predefined heuristics

A transport task includes of a non-empty list of order
records, where each order record includes particular article
and the its requested number of items. The whole list is



Fig. 2: Simulated warehouse layout: dark green blocks — shelf racks, light green backgrounds — sub-warehouses, gray floor

— waiting areas, red rectangles — gates

frequently too large for one carrier. Therefore, it is divided
into a set of batches that may be collected using single
forklift in our case. Items are put into carriers, like wooden
pallets or freezer containers. A forklift may carry defined
number of carriers. Order list is divided into batches, and
each of them includes selected order records, which should
be processed together in an order defined by the WMS.
The list is provided to the forklift operator using dedicated
panel or voice system. It guides the order picker through the
warehouse. In fact, the picking sequence is determined by a
routing strategy defined in the WMS. These picking routes
are simple and clear as human pickers tend to refuse routing
schemes to which they are not accustomed [16].

Literature shows various heuristic strategies, like S-shape,
return, mid-point, largest gap or composite [17]. In this
research we compare two routing strategies: S-shape and
largest gap. Comparing to an optimal strategy, they reduce
congestion within aisles [2]. Fig. 3 presents graphical repre-
sentation of these two strategies in a single-block warehouse,
which has vertical picking racks.

The black rectangles depict item’s locations to be picked
during respective path. Paths following the S-shape strategy
are as follows: the picker enters an aisle if at least one
requested item is located in that aisle and goes through it
completely. Next, he/she proceeds to the next one, which
has an item. An exception may happen in the last aisle:
if the picker is in front cross aisle, he/she would pick the
items in the last aisle and close the path along the front
aisle. The largest-gap strategy produces paths in which the
picker entirely traverses both leftmost and rightmost aisles
containing an item to be picked. All the other ones are
entered from the back or the front ones to make the not
traversed distance between two adjacent locations maximal.

(a) S-shape
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Fig. 3: Routing strategies

C. Optimization strategy

The research practice considers the problem of order
batching optimization as an integer programming challenge
[18]. Recent literature consist various optimization models
and approaches that has been applied to the picking routing
problem [15]. Generally, the batch picking problem may
be considered separately, or in combination with batching,
picker assignment or storage location assignment. The opti-
mized metric typology may be distanced or time based. The
task can be considered static or dynamic and deterministic
or stochastic. In this research, we use static and stochastic
approach that uses distance based metrics. The picking
routing problem is considered as a separate activity.



Literature delivers many solutions that use various ap-
proaches [19], [20], [15], like local search with nearest
neighborhood variants, custom heuristics, column generation,
branch and cut, and numerous global optimization strategies:
tabu search, simulated annealing, particle swarm optimiza-
tion, genetic and evolutionary algorithms, and many others.

This research uses a customized evolutionary algorithm.
The underlying problem closely resembles the Generalized
Traveling Salesman Problem [21] and can be formulated as
an optimization task aimed at arranging the shortest possible
route (picking path) while visiting all the intended waypoints
(products), where each waypoint may have multiple potential
locations to choose from (shelves with a given product).
Each solution is represented by a pair of arrays, where the
first encodes the order of the waypoints, and the second
determines the selection of a specific location for each
waypoint.

Various genetic operators are applied to such a genome,
including, among others, swapping random array elements
and mixing arrays of two different solutions. Individuals are
evaluated by a simple fitness function that returns values
inversely proportional to the length of the encoded picking
path. The algorithm utilizes a truncation selection method
that has been validated in the optimization of warehouse
operations [22]. The T% of the top fittest individuals are
selected and reproduced in the next generation.

III. CASE STUDY DESCRIPTION

The study is conducted using real retail distribution center
located in Europe. Fig. 2 presents the warehouse layout. The
storage area is equipped with single-level racks located in
five zones, in which different groups of products are stored.
These zones, named sub-warehouses are distinguished with
different light green shades in figure. The shelf racks are
marked as dark green rectangles. Gray sections represent
various auxiliary storage fields, like places for empty or
previously fully picked pallets, labeling or wrapping zones,
or storage loading zones close to truck gates, which are
denoted as red squares.

The distribution center is quite large as it handles several
dozen of truck delivering goods to final customers on daily
basis. A few hundreds people are employed at the warehouse
ensuring its continuous operation on a 24-hour basis. More
than half of them participates in the picking process, which
is the focus of this study. Pickers operate forklifts that may
pick up two pallets. We assume that each truck carries on
maximum number of 33 pallets. We have to keep in mind
that standard picking process incorporates less carriers as
some space must be left for other goods that are booked in a
different way. The study focuses on main picking process and
other auxiliary operations, like the replenishment, wrapping,
labeling or quality checks are excluded.

The warehouse pickers use four types of carriers: wooden
pallets and half-pallets, freezer containers and storage blue-
boxes. Each of two-pallets forklifts generally carries two
pallets, four half-pallets, up to 4 containers and blue-boxes,
or any available combination of them.

The goods are assigned to carriers by the existing WMS.
Furthermore, this management system assigns carriers into
the batches, i.e. to be handled by one forklift with human
operator. Picker rides across the warehouse, collect the goods
and fill carriers with assigned goods. The plan, how to ride
through the warehouse, what goods should be picked and
in which order is decided by the WMS and passed to the
human worker using voice system or a mobile panel.

Allocation strategy of goods to individual carriers and
carriers to the batches is not in focus of this paper. This
work focuses on the representation of real picking process
using the agent modeling framework. This ABM simulation
study considers preparation of pallets for 30 truck transports.
Parameters of each considered transport picking process is
described in Table 1. Each transports is grouped into certain
number of batches and carriers. The number of visited
shelves during the picking is also depicted in the table. We
assume that all shelves have enough products to be picked
up and product replenishment is not required. Summarizing,
489 picking routes are modeled.

TABLE I: Parameters of simulated truck transports

Id | shelves | batches | pallets half-pallets containers  blueboxes
1 740 14 16 1 4 1
2 923 17 17 4 3 1
3 725 14 13 4 4 1
4 851 21 18 2 7 2
5 682 12 13 2 4 1
6 718 16 21 2 4 1
7 748 15 16 3 5 1
8 775 16 19 2 5 1
9 734 16 18 5 5 1
10 738 15 18 3 5 1
11 721 14 15 3 4 1
12 764 16 21 2 6 1
13 786 14 17 4 6 1
14 769 14 15 3 5 1
15 718 14 16 1 6 1
16 772 18 11 8 5 2
17 894 20 15 4 5 3
18 751 18 13 4 8 3
19 805 16 17 5 4 1
20 735 14 15 3 4 1
21 715 19 13 4 4 2
22 742 17 13 5 6 2
23 822 13 12 4 4 1
24 826 19 14 7 7 2
25 802 22 17 6 6 2
26 895 19 18 6 8 2
27 740 19 14 6 6 2
28 796 18 14 7 6 2
29 715 15 18 3 4 1
30 754 14 18 1 5 1

We see that tasks differ and the working load is uneven.
The number of visited shelves varies between 715 and 923
shelves visited, split into range of 14 to 21 batches. We see
that transport tasks, assigned batches and routes vary a lot.

IV. OPTIMIZATION RESULTS

Presentation of the optimization results is split into two
elements. At first, we compare optimization and heuristics
results for single transportation task #1. In such a config-
uration the number of pickers in the warehouse is very



TABLE II: Statistics of single task times in seconds
\ MIN Q1 MED Q3 MAX \ R IQR \ n oG or MAD
original ‘ 2328 2352 2364 2382 2445 ‘ 117 30 ‘ 23683 229 215 15
optimal | 2280 2316 2328 2340 2367 | 87 24 | 23279 167 182 12
L-gap 2304 2334 2343 2351 2385 ‘ 81 17 ‘ 23435 159 147 9
S-shape | 2301 2334 2349 2367 2436 | 135 33 | 23520 265 260 18

low, i.e. only the ones assigned to the simulated task occur
during simulations. Such an idealistic simulation excludes
possible conflicts between agents. Next, all tasks are subject
to optimization. In this case, realistic conflicts may arise
during the execution of assigned picking tasks.

The simulation model is stochastic, therefore the same
simulated task may be executed with a different time. To
avoid random effects, the Monte Carlo optimization setups
is used. Each simulation is run 99 times and the validation
is performed using resulting time quantiles and histograms.

A. Single task optimization

Single task optimization allows for isolated picking com-
parison, with excluded effects of routing conflicts. They
are conducted for task #1. Table Ilpresents comparison of
statistical factors comparing obtained solutions. MIN and
MAX denote minimal and maximal values, Q1 and Q3 the
first and the third quantile, MED is median value. R =
MAX —MIN is the data range, while IQR = Q3 — Q1 denotes
the interquartile range. Value u is data mean, and og normal
standard deviation. The or denotes robust M-estimator of
standard deviation evaluated using logistic function [23].
Finally, MAD denotes median absolute deviation around
median, i.e. another robust scale estimator. Figs. 4 and 5
show graphically times distribution in form of the histogram
and respective box-plot.
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Fig. 5: Histogram and boxplot: heuristics

B. All tasks optimization

Similar simulation study is performed for full case. All 30
transportation task are subject to improvement and obtained
picking times are compared. Fig. 6 presents histogram and
boxplot for historical picking times data. We observe that
picking times are highly varying due to the stochastic model
of single tasks, though the histogram is quite regular with its
shape similar to Gaussian.
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We highlight some observations in the results. The S-shape
heuristics results in the largest times distribution, in contrary
to the largest gap approach. Optimized solution also exhibits
relatively small distribution of picking times. Each heuristics
diminishes resulting time. The mean value is decreased by
1.7% in the optimized version, 1.4% with the largest gap
strategy and 0.7% with S-shape. The improvement in relation
to median is 1.5%, 0.9% and 0.6%, respectively.

Fig. 6 shows analogous plots for S-shape and largest gap
heuristics. The largest gap variant seems to generate rela-
tively scattered realizations, while S-shape is quite regular.

Table III presents statistical summary of the analyzed
heuristics. We observe that the heuristics cannot improve
the situation significantly. They increase the range of the
picking times. They improve minimal times, while average
times remain almost unchanged. This observations allows
to conclude that the optimization has potential. Moreover,
distributions of picking times require verification as they
significantly impact entire simulation.



TABLE III: Statistics of all tasks times in seconds

| MIN Q1 MED Q3 MAX | R IQR | n oG OR MAD
original 26316.0  28635.0 29217.0 30048.0 32487.0 | 6171.0  1413.0 | 292983 12523  1088.5 684.0
value 25212.0  27993.0 29295.0 30187.5 32154.0 6942.0 21945 | 292554 1500.2 1611.1 1128.0
L-gap change 1104.0 642.0 -78.0 -139.5 333.0 -771.0  -781.5 429 2479 5227  -4440
[%] 4.2% 2.2% -0.3% -0.5% 1.0% | -12.5% -55.3% 01% -198% -48.0% -64.9%
value 25290.0  28335.0 29112.0 29862.0 32961.0 | 7671.0 1527.0 | 291943 14374 12184 753.0
S-shape  change 1026.0 300.0 105.0 186.0 -474.0 | -1500.0  -114.0 1040  -185.1 -130.0 -69.0
[%] 3.9% 1.0% 0.4% 0.6% -1.5% | -24.3% -8.1% 04% -148% -11.9% -10.1%
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V. CONCLUSIONS AND FURTHER RESEARCH

Obtained results, though still in the initial optimization
phase prove that the agent-based model of the picker-to-parts
warehouse operation may be applied to optimize picking
routing times. Optimization scheme is compared against
two reference strategies: S-shape and the largest gap. The
improvement is visible in case of a single picking task,
while entire system optimization requires calibration of the
auxiliary operations what should allow for consistent results.

This subject requires further research, especially in opti-
mization hierarchical coordination between general picking
tasks.
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