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Abstract—Last-mile delivery remains one of the key challenges
in modern logistics, especially given the growing demand for
fast and efficient transport solutions. This study evaluates two
delivery strategies: autonomous aerial drone delivery with one
parcel per trip and autonomous terrestrial robot delivery with
the ability to transport multiple parcels per trip. Simulation
modeling is used to analyze the economic, environmental, and
social aspects of these methods. The study applies Simulation
of Urban Mobility software to simulate the performance of
autonomous terrestrial robots in an urban environment taking
into account traffic, and a mathematical model to evaluate
the performance of autonomous aerial drones. Three scenarios
are considered: (1) drone-only delivery, (2) robot-only delivery,
and (3) mixed fleet approach combining both methods. The
results show that autonomous aerial drones provide faster de-
livery, but autonomous terrestrial robots are a more economical
and environmentally sustainable solution. The hybrid approach
strikes a balance between efficiency and cost, optimizing last-mile
logistics. This study contributes to the development of sustainable
urban delivery models and provides practical recommendations
to policy makers and logistics companies.

I. INTRODUCTION

Last-mile delivery poses one of the most significant chal-
lenges in modern logistics, especially with the rapid growth of
e-commerce and urbanization. The use of autonomous drones
as a delivery method has opened new opportunities to opti-
mize logistic processes: reducing road congestion, reducing
carbon emissions, and accelerating delivery times. However,
numerous challenges remain, particularly in determining the
most efficient delivery operation model.

*This study is part of the IN2CCAM project that has received funding from
the European Union’s Horizon Europe research and innovation programme
under grant agreement No 101076791.

The integration of advanced technologies into logistics
systems has brought about significant advancements, but also
introduced complexities that require careful study. Swanson
[1] proposed a simulation-based model to minimize the total
delivery time by optimizing drone fleet operations, demon-
strating the potential of drones in dense urban environments.
Similarly, Verri et al. [2] analyzed tradable permit models,
offering solutions for equitable and efficient airspace allocation
among drone operators. These works highlight the need for
effective regulatory and logistical frameworks to maximize
the benefits of drone delivery systems. Eeshwaroju et al.
[3] further advanced this area with the IoT-based Three-
Dimensional Dynamic Drone Delivery system, which uses
IoT integration for real-time route adjustments, enhancing
operational efficiency.

Several studies have explored the integration of different
transport modes to improve the efficiency of delivery. Gerrits
and Schuur [4] proposed a synchronization approach com-
bining drones, trucks, and street robots for parcel delivery
in smart cities, focusing on coordinated operations to reduce
delivery time and resource wastage. Similarly, Wang et al.
[5] introduced a hybrid delivery model using drones and
electric trucks, demonstrating significant reductions in carbon
emissions and delivery costs through effective collaboration.
These findings emphasize the potential benefits of combining
various delivery methods, which is critical when evaluating
robots and drones in last-mile logistics.

Energy efficiency remains a critical aspect of logistics.
Bruni et al. [6] developed energy-efficient unmanned aerial
vehicle models that incorporate non-linear energy consumption
to improve operational sustainability while reducing costs.



Furthermore, Liu et al. [7] highlight strategies for optimizing
energy consumption using mixed fleets, which is crucial for
evaluating the sustainability of drones and robots. Qu et al.
[8] explored environmentally aware robotic vehicle networks,
which provide energy management strategies supporting green
logistics. In addition, Atiyah et al. [9] propose a methodology
to improve energy efficiency in wireless systems, which can
be adapted for last mile logistics.

Based on the analysis of the related literature, this paper
aims to address the gap in comparing single-package delivery
autonomous aerial drones with autonomous terrestrial robots
capable of carrying multiple packages per trip [10]. The
logistic performance of urban vehicles can be simulated with
specific software developed according to the requirements of
the environment to be analyzed [11]. The study applies Sim-
ulation of Urban Mobility (SUMO) software to simulate the
performance of autonomous terrestrial robots in an urban envi-
ronment taking into account traffic, and a mathematical model
to evaluate the performance of autonomous aerial drones.
Three scenarios are considered: (1) drone-only delivery, (2)
robot-only delivery, and (3) mixed fleet approach combining
both methods. The results show that autonomous aerial drones
provide faster delivery, but autonomous terrestrial robots are
a more economical and environmentally sustainable solution.
The hybrid approach strikes a balance between efficiency
and cost, optimizing last-mile logistics. The findings will
help determine which approach is more effective in terms of
economic, social, and environmental performance.

The remainder of this paper is the following. Section II
presents the methodology used to compare the proposed last-
mile deliveries. Section III describes the case study and
Section IV discusses the results. Finally, Section IV reports
conclusions and future research.

II. METHODOLOGY

This study employs a comparing approach to evaluate the
performance and efficiency of delivery systems involving an
autonomous terrestrial robot and an autonomous aerial drone.
The methodology consists of two key phases: (1) simulating
the autonomous terrestrial robot’s operations using SUMO
and calculating the autonomous aerial drone’s performance
through a mathematical model; (2) developing and analyzing
different operational scenarios to compare their effectiveness.
The first phase of the methodology involves modeling the
autonomous terrestrial robot’s operations in the SUMO envi-
ronment. SUMO is an open-source software for microscopic
traffic flow simulation that provides a detailed and controlled
platform for studying transportation systems. By leveraging
the capabilities of SUMO, the study records key performance
metrics of the autonomous terrestrial robot, including the total
distance traveled and the time spent on completing predefined
delivery tasks. The simulation replicates real-world conditions,
allowing for an accurate assessment of the autonomous terres-
trial robot’s capabilities in dynamic delivery scenarios.

Unlike an autonomous terrestrial robot, the performance
of an autonomous aerial drone is not simulated but rather

analyzed using a mathematical model, since autonomous aerial
drones do not face traffic problems. Therefore, their perfor-
mance was assessed using a mathematical model rather than
simulation. This model provides estimates of critical perfor-
mance parameters such as total flight range, total delivery
time, and the number of autonomous aerial drones required
to complete all deliveries within the allotted operating hours.
This approach provides a structured and objective assessment
of drone performance based on predefined conditions. To as-
sess the performance of drone-based delivery, a mathematical
model is developed to estimate the total flight distance, total
delivery time, and the minimum number of drones required
to complete all deliveries within the available working hours.
The total flight distance covered by all drones in one day is
given by Equation (1):

Ltotal =

n∑
i=1

NCi
· 2 · (Di + dtl) (1)

where:
• n is the number of delivery departments,
• NCi

is the number of customers in department i,
• Di is the hub-to-department distance,
• dtl is the take-off and landing distance of the drone.
The constant equal to 2 in Equation (1) is included to take

into account the outbound and return trips.
The total time required to complete all deliveries, consider-

ing both flight time and service time, is calculated using the
following equation.

Ttotal =

n∑
i=1

NCi

(
2Di

v
+ 2Ttl + Tc

)
(2)

where:
• 2Di

v represents the round-trip flight time from hub-to i-th
department,

• 2Ttl is the time required for the drone’s take-off and
landing,

• Tc is the service time required to deliver the package to
the customer,

• v is the average speed of the drone.
To ensure that all deliveries are completed within the

available working hours, the required number of drones is
determined by the following formula:

Q′
drones =

⌈
Ttotal

Tw

⌉
(3)

where:
• Tw is the total available working time per day (minutes)

By combining Equation (1), (2) and (3), the complete formula
for estimating the required fleet size is the following:

Q′
drones =


∑n

i=1 NCi

(
2(Di+dtl

)

v + 2Ttl + Tc

)
Tw

 (4)



Formula (4) provides an estimation of the number of drones
necessary to complete all deliveries within the given opera-
tional constraints.

In real-world applications, drone operations may also be
subject to regulatory constraints such as visual line-of-sight
requirements, altitude limits, and restricted flight zones. While
these aspects are not explicitly modeled in this study, they rep-
resent important operational constraints to consider in practical
implementations.

A. Sustainability Key Performance Indicators

Sustainability key performance indicators are a useful tool
for comparing urban mobility solutions [12]. The efficiency
of autonomous aerial drone-based and autonomous terrestrial
robot-based delivery, is evaluated by considering the following
key performance metrics:

1) Total delivery time: calculated for each strategy.
2) Total number of trips: determined for each zone.
3) Required number of drones and robots: calculated

based on the available working hours per day.
4) Distance traveled daily and annually: measured for

both strategies.
5) Environmental, social and economic aspects: analyzed

based on the results from the mathematical model and
SUMO simulations.

The sustainable evaluation is based on the analysis of
environmental and social impacts by calculating the cost of
externalities between the different strategies, to compare the
economic effectiveness.

The autonomous aerial drone model is defined by several
key parameters. Autonomous aerial drone speed is consid-
ered in the analysis, as it is necessary to calculate the time
required for deliveries based on the type of vehicle. The
service time per client represents the time needed for the
drone to complete the handover of a parcel. The payload
capacity is limited to a single parcel per trip, meaning that
each autonomous aerial drone can carry and deliver only one
package at a time. The working time refers to the number
of hours the vehicle operates within a defined work schedule.
Similarly, the autonomous terrestrial robot model follows the
same structure. Autonomous terrestrial robot speed is used
to determine delivery time depending on the type of vehicle.
The service time per client remains the same as for drones.
Unlike autonomous aerial drones, the payload capacity of the
autonomous terrestrial robot allows for multiple parcels per
trip, enabling more efficient batch deliveries. The working time
is also determined by a fixed work schedule.

III. CASE STUDY

To evaluate the proposed methodology in a real-world
scenario, the Polytechnic University of Bari (Italy) was chosen
as a case study. The delivery process involves transporting
parcels from a central distribution hub to nine departments,
each one with a unique number of clients and distance from
the hub (Fig. 1).

Fig. 1. Map of the Polytechnic University of Bari

This example allows us to analyze the efficiency of three
delivery strategies: single-parcel delivery by an autonomous
aerial drone per trip and multiple parcels delivery by an au-
tonomous terrestrial robot per trip, mix fleet with autonomous
aerial drone and autonomous terrestrial robot. For the purposes
of this study, it is assumed that 12 clients are served in each
department, for a total of 108 clients per day, and that the
autonomous terrestrial robots have a maximum capacity of
three parcels per trip. The other parameters considered for the
comparative analysis are described below.

The drone model includes the following key input parame-
ters:

1) Drone speed: 30 km/h (500 m/min).
2) Service time per client: 2 minutes per client.
3) Payload capacity: One parcel per trip.
4) Working constraints: 8-hours workday and 220 work-

ing days per year.
The robot model includes the following key input parame-

ters:
1) Robot speed: 8 km/h (2.22 m/min).
2) Service time per client: 2 minutes per client.
3) Payload capacity: Three parcels per trip.
4) Working constraints: 8-hours workday and 220 work-

ing days per year.
The key input parameters for drone and robot models are

summarized in Table I.

TABLE I
KEY INPUT PARAMETERS FOR DRONE AND ROBOT MODELS

Parameter Drone Robot
Speed 30 km/h (500 m/min) 8 km/h (2.22 m/min)
Service Time per Client 2 minutes 2 minutes
Payload Capacity 1 parcel 3 parcels
Working Hours per Day 8 hours 8 hours
Operating Days per Year 220 days 220 days

A. Scenarios

This study analyzes three delivery scenarios to evaluate their
efficiency within a case study framework.



The first scenario involves single-parcel delivery, where
each drone performs a separate trip to deliver one parcel. In
this case, each client requires an individual trip from the cen-
tral hub to their location. The total number of trips is directly
proportional to the number of clients in each department. The
total delivery time is calculated as the sum of flight time, take-
off and landing time, and service time for all clients, while the
total distance includes the round-trip distance from the hub to
each client. This approach simplifies operational planning, as
each trip serves only one client, making it particularly effective
in low-density areas where clients are widely distributed across
the territory. However, the drawbacks of this scenario include
higher operational costs, increased energy consumption, and
longer delivery times due to the larger number of required
trips.

The second scenario involves multiple parcel delivery,
where a robot can deliver up to three parcels per trip. In this
case, the total number of trips is significantly reduced as each
trip serves multiple clients. The total delivery time takes into
account additional stops and service time for each client. The
total distance includes routes from the hub to the group of
clients and the distances between clients within a single trip.
This scenario is more efficient in high- density delivery zones,
where clients are located closer to each other, as it reduces the
total delivery time and overall distance traveled.

The third scenario involves the collaboration of autonomous
aerial drones and autonomous ground robots, which simulta-
neously deliver packages from a hub directly to customers. In
this model, drones are used for short-range deliveries, ensuring
fast transportation of packages to nearby customers, while
robots perform longer-range deliveries, effectively covering
large areas. This distribution of tasks allows for a significant
reduction in both the overall delivery time and the distance
traveled by each type of transport. As a result, the hybrid
approach will reduce operating costs and energy consumption,
increasing the overall efficiency of last-mile logistics. This
system is an effective solution for sustainable urban logistics.

B. Model for autonomous aerial drones

The drone flight paths were modeled as direct routes from
the hub to the department without taking into account the
extensive waypoint optimization. In practice, drones must
perform vertical takeoffs and landings and occasionally adjust
their flight paths to comply with airspace regulations and
safety corridors. These additional maneuvers increase the
overall distance traveled compared to purely ground-based
routes. Therefore, the longer distances recorded for drones in
Table I correspond to realistic drone operating conditions.

The last mile delivery performed with the use of au-
tonomous aerial drone to serve all 108 clients, achieved the
following results:

• Total distance traveled: 96,000 meters.
• Total delivery time: 408 minutes.
• Number of drones required: Only one drone was

needed to complete all deliveries within the given con-
straints.

These results confirm that a single drone is capable of com-
pleting all deliveries within the available working hours while
adhering to the defined operational constraints.

C. Autonomous terrestrial robot simulation

The robot simulation was carried out in SUMO, which
provided a detailed and dynamic environment to analyze robot-
based delivery operations, ensuring results as close to real
world conditions as possible. SUMO allows the incorporation
of various factors to calculate not only the required time but
also the distance traveled by the robot (Fig. 2).

The simulation considers traffic consisting of 100 motor-
cycles per hour, 100 bicycles per hour, and 600 pedestrians
per hour. Since two of the delivery points are located outside
the campus of the Polytechnic University of Bari, the robot is
required to cross both a pedestrian crossing and a roadway. In
this area, the traffic also includes 500 cars per hour, 150 buses
per hour, and 50 trucks per hour, along with the previously
mentioned pedestrians, bicycles, and motorcycles.

Although two delivery points are located outside the main
campus and require crossing the road, these crossings occur
at pedestrian crossings without traffic lights. Therefore, the
additional waiting time at signalized intersections was not
taken into account when calculating delivery times.

The robot is capable of delivering three parcels per trip,
after which it returns to the hub to collect the next batch. A
total of 9 departments need to be served, following the same
algorithm: pick up three parcels from the hub, deliver them to
clients, and return for the next batch. This process continues
until all deliveries are completed. Such an approach ensures
efficient parcel distribution, optimizing both travel distance
and delivery time within an urban environment.

Such an approach ensures efficient parcel distribution, opti-
mizing both travel distance and delivery time within an urban
environment. The results of the SUMO simulation provided
detailed data on how many kilometers the robot traveled
each day and how much time was required to complete all
deliveries, considering real traffic conditions. Based on the
SUMO simulation, servicing all 108 clients required, the
results are:

• Total distance traveled: 36,426 meters.
• Total delivery time: 564.2 minutes.
• Number of robots required: Two robots were needed

to complete all deliveries within the constraints given.

Since this exceeds the available 480-minutes workday, an
additional robot is required to complete all deliveries within
the given constraints. This highlights the impact of real-world
traffic conditions on delivery efficiency, emphasizing the need
for multiple robots to ensure timely delivery under operational
constraints.

As shown in Table II, the travel distances for autonomous
aerial drones and autonomous terrestrial robots vary signifi-
cantly depending on the department.



Fig. 2. Simulation of robots in SUMO

TABLE II
TRAVEL DISTANCES FOR ROBOTS AND DRONES

Department Robot by SUMO (m) Drone (m)
DMMM 64.42 200
DEI 73.35 250
ArCoD 99.1 300
DSTG 290.69 350
Math 349.67 400
DFSF 440.23 450
Agraria 501.1 500
Amministrazione 739.8 600
LabZERO 1000 700

IV. RESULTS

This section evaluate economic, social and environmental
performance of the proposed methodology.

The economic factor are based on investment costs, energy
costs, depreciation period (in years), and insurance. It is also
important to consider the number of workers and their daily
wage, as well as maintenance costs, which contribute to the
overall operating costs.

In this study, we supposed an energy price of 0,30 dol-
lars/kWh, annual insurance is equal to 10 percent of the cost
of the vehicles, hourly worker cost (involved in the delivery
activities through carrying of package in the autonomous vehi-
cles) is 38 dollars and annual maintenance cost equal to 2,000
dollars for each vehicle. Economic values are calculated by
also considering data on annual mileage (Year travel distance),
number of drones and robots needed, and total delivery time.
These values are obtained by the mathematical calculation
and simulations performed in the previous section for each
scenario. In the first scenario, only one autonomous aerial
drone is needed because the total delivery time is less than
the available working time. While in the second scenario,
two autonomous terrestrial robots are needed, as the delivery
time exceeds the available working time. In the third scenario
one autonomous aerial drone and one autonomous terrestrial
robot are able to complete all deliveries in a working day.
The autonomous terrestrial robot is responsible of customers
located in denser areas where its ability to carry multiple
packages per trip maximizes efficiency. The autonomous aerial
drone is being used to increase performance in delivering
packages to much more distant customers, to reduce total
delivery time.

The investment and operational costs considered in the
economic analysis are summarized in Table III.

TABLE III
INVESTMENT AND OPERATIONAL COSTS FOR VEHICLES

Cost Item Drone Robot
Purchase Cost (USD) 5,000 5,500
Annual Maintenance Cost (USD) 2,000 2,000
Annual Insurance Cost (USD) 500 550
Energy Price (USD/kWh) 0.30 0.30
Worker Cost (USD/hour) 38 38
Depreciation Period (years) 5 5

Fig. 3. Economic aspect for each scenario

Figures 3, 4, and 5 provide a comparative analysis of the
three delivery scenarios across economic, environmental, and
social dimensions. Specifically, Figure 3 presents the total
operational costs for each delivery model. Figure 4 illustrates
the environmental impact measured in terms of CO2 emis-
sions resulting from energy consumption. Figure 5 shows the
social impact, considering noise pollution and accident risks
associated with each delivery solution.

The economic results obtained from this analysis for each
scenario are presented in Figure 3.

The results of the analysis clearly show that the most
economically advantageous option is delivery using robots.
This conclusion is based on a comparative analysis of the total
costs for each scenario, where robotic delivery demonstrated
the greatest cost effectiveness by reducing labor and energy
costs while maintaining operational feasibility. While a hybrid
approach involving both drones and robots can balance the
load and optimize delivery times.

The environmental impacts are linked to air pollutant emis-
sions, considering the electric powertrain used. Externalities
considered for this factor are based on the transport external
costs proposed in EU Handbook [13]. As shown in Figure 4,
we can see the environmental aspect for each scenario.

The analysis takes into account the emissions resulting from
energy consumption, the impact on climate change, and the
total distance traveled by each mode of transport. This data
allows for a comprehensive comparison of the sustainability
of different operating models and the most environmentally
friendly and cost-effective solution for urban logistics. Here,
too, we see the superiority of the robot-only scenario.

The social impacts considered are related to noise pollution



Fig. 4. Environmental aspect for each scenario

Fig. 5. Social aspect for each scenario

and accidents. Externalities considered for these factors are
derived by similar vehicles described in the transport external
costs proposed in EU Handbook [13].

Figure 5 presents the results of this analysis, showing how
different delivery models affect social aspects such as urban
noise levels and accident risks.

Although robots exhibit higher accident risk due to inter-
action with ground traffic, they generate lower noise levels
compared to drones. Conversely, drones minimize collision
risks but contribute to greater noise pollution. Therefore, the
results are affected by the urban density and community
sensitivity in which to use the two last mile delivery options.

V. CONCLUSION

In this paper, a comparative analysis of sustainable urban
delivery models is performed considering autonomous aerial
drones and autonomous terrestrial robots. Three scenarios were
developed using: i) only drones with only one transportable
package per trip, ii) only robots with multiple transportable
packages per trip, and iii) a mixed fleet with drones and
robots. Distances and relative times in drones’ delivery were
calculated and robots was simulated to obtain distances and
times as close to real situations as possible, given the presence
of other vehicles on the roads.

The comparative analysis on the environmental, economic,
and social sustainability is adopted to evaluate the different
scenarios developed in innovative last-mile delivery activities.
The assessment uses external costs to evaluate the differences
in social and environmental impacts through analysis of air
pollution, noise pollution, and accidents. In addition, a cost
analysis approach is adopted to identify the economic value
considering investment and operative costs.

A case study was developed to assess the potential and
compare the impacts of different approaches.

In future work, we plan to extend the proposed framework
by introducing dynamic routing strategies based on real-time
traffic and demand data.
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