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Abstract— Emotion recognition from audio signals is essential
in forensic applications, offering insight into emotional states
during interrogations, threat assessments, and crime scene
analysis. This paper proposes an Inception-based deep learning
model tailored for forensic arabic audio emotion recognition.
The Inception architecture, with its multiscale feature extrac-
tion capabilities, efficiently captures subtle emotional details
from complex audio signals. The model was evaluated on a
dataset that represents a diverse range of emotional expressions,
achieving superior performance in accuracy, robustness, and
adaptability compared to traditional approaches. Its precision
and ability to handle real-world variability make it particularly
suited for forensic investigations. This work underscores the
potential of advanced neural architectures in enhancing forensic
decision-making and analysis.

Index Terms— Audio, Emotion, Recognition, Deep Learning,
Inception, Forensics, Cybersecurity.

I. INTRODUCTION

Forensic science essentially revolves around gathering
evidence in that it could be analyzed to reveal the truth
behind various incidents such as physical crimes or digital
intrusions, in addition to other disputes that arise. Our era
has seen a growing need of digital forensics that specifi-
cally deals with investigating criminal activities and security
breaches occurring in the cyberspace. Forensics encompass
tasks such as examining drives for data retrieval and de-
termining cyberattack origins as well as identifying those
responsible, for such actions. Its significance has increased
in tandem with the increasing dependence on technologies.
The relationship between cybersecurity and forensics [1]-[7]
is closely connected as they work hand in hand to safeguard
systems and data from intrusions or breaches in security
measures. When cyberdefenses fail, digital forensics steps in
to uncover details about cyberincidents aiding organizations
and law enforcement agencies in unraveling the what, how,
and who are behind events. Recognizing emotions is one
of prime important focuses in forensic investigations. It
provides experts and authorities with better insights on a
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person’s intentions, honesty, or state of mind. For instance,
amid interrogations, picking up on emotions like stress,
anxiety, or calmness can help investigators figure out whether
someone is lying or telling the truth. In the same vein, track-
ing emotions [8], [9] in threat assessments—Ilike detecting
anger, fear, or distress in a phone call or a surveillance
recording—can provide valuable clues for solving cases.
Emotion recognition also comes in handy when working
with victims of crimes. By analyzing how someone speaks,
experts can pick up on signs of trauma and provide better
support tailored to what the person is going through. In recent
years, deep learning has completely changed how we ap-
proach emotion recognition. Instead of relying on manually
crafted methods, these models can dig into audio recordings
and automatically pull out patterns and details that people
might miss. This has massively boosted accuracy, especially
in tough scenarios like forensic cases, where audio quality
isn’t always perfect. With neural networks like convolutional
and recurrent models, it is now possible to sort through
large amounts of audio and figure out emotional clues from
different kinds of expressions or environments. One model
that really stands out for this job is the Inception architecture.
It first showed up in 2014 as part of Google’s GoogLeNet
[10], [11] for image classification and has been praised for
its outstanding way of working. Inception processes data at
different scales at the same time, which makes it adequate
at picking up on both small details and bigger patterns.
Even though it was originally built for image-related tasks,
researchers have found ways to make it work for audio
by using spectrograms—visual representations of sound—as
images, or just numerical inputs. In fact, it has already been
put to good use in things like speech recognition and music
analysis, proving how adaptable and reliable it is. With
its ability to handle complicated data efficiently, Inception
is in many cases a perfect fit for forensic audio emotion
recognition, where getting things right really matters. Finally,
being aware that every language has its particularities, we
precise that our study covers the Arabic audios only. In this
paper, we propose an Inception-based model that focuses on
recognizing Arabic emotions from audio in forensic settings.
We will walk through how the model works, test it on a
dataset with diverse emotional expressions, and compare it
with traditional methods to show why it could be an adequate
solution for real-world forensic challenges.
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II. DATASET

In our study, we have used the Arabic Natural Audio
Dataset (ANAD) [12]. The dataset comprises 1384 speech
records extracted from eight Arabic talk show videos featur-
ing live calls between an anchor and a caller. Each video
was segmented into turns for the anchor and the caller.
Eighteen listeners labeled the emotional content of each
turn as either happy, angry, or surprised. To ensure quality,
silences, laughter, and noisy segments were excluded, and
the remaining speech data was divided into 1-second units.
A total of 25 low-level acoustic features, including intensity,
zero crossing rate, MFCC 1-12, FO (fundamental frequency),
FO envelope, probability of voicing, and LSP frequency 0-7,
were extracted from the audio. For each feature, 19 statistical
functions such as mean, maximum, range, standard deviation,
and skewness were computed, along with delta coefficients
as first derivatives, resulting in a feature set of 950 attributes,
among them only 844 attributes are used in our experiment.
Table I shows the audio features and methods to extract them
from WAV files of the dataset. Table II shows the statistical
functions applied to audio features. Table III shows the
dynamic features. Table IV shows the overall features. Fig.
1 shows the data distribution between training and testing.
Fig. 2 presents the distribution of emotion classes over the
dataset. Fig. 3 visualizes a sample of features extracted from
an audio wave file in the dataset using the library Librosa.

TABLE I: Audio features and methods to extract them from
a WAV File

Feature Definition Extraction Method
Intensity Represents the | Use libraries like
perceived loudness | LibROSA [13] to
of the audio signal, | calculate amplitude
often related to its | envelopes.
amplitude.
Zero crossing | The rate at which | Extract using LibROSA’s
rate the audio waveform | zero_crossings ()
crosses  the  zero | function.
amplitude line, useful
for identifying tonal
vs. percussive sounds.
MFCC 1-12 Mel-frequency Compute with

librosa.feature.
mfcc () in LibROSA.

cepstral  coefficients;
represent the short-
term power spectrum
of sound, capturing
timbral features.

F0 (Fundamen-
tal frequency)

The lowest frequency | Extract using tools like
of a periodic wave- | parselmouth [14] or Praat
form, corresponding to | [15].

the pitch of the sound.

A smoothed curve out-
lining the variations in
the fundamental fre-
quency over time.

FO envelope Use pitch tracking algo-
rithms like pYIN in Li-

bROSA.

Probability  of
voicing

The likelihood that a
segment of audio cor-
responds to a voiced
sound (e.g., vowels).

Compute with pitch esti-
mation libraries such as
Parselmouth [14].

LSP frequency | Line Spectral Pairs | Use specialized tools like
0-7 (LSP); represent | SpeechPy [16] or Kaldi
spectral properties of | [17].
speech, often used
for compression and

synthesis.

TABLE II: Statistical functions applied to audio features

Statistical Function Definition

Maximum The highest value of the feature over time.
Minimum The lowest value of the feature over time.
Range The difference between the maximum and

minimum values.

Absolute Position of Max-
imum

The time index of the maximum value.

Absolute Position of Min-
imum

The time index of the minimum value.

Arithmetic Mean The average value of the feature over time.

Linear Regression 1, 2, A, | Regression coefficients representing trends or
Q slopes in the feature values.

Standard Deviation A measure of variability or dispersion in the
feature values.

Kurtosis The “peakedness” of the feature value distri-
bution.

Skewness The asymmetry of the feature value distribu-
tion.

Quartiles (1, 2, 3) Values dividing the data into quarters.

Inter-Quartile Ranges (1-
2, 2-3, 1-3)

Differences between quartiles, representing
variability.

TABLE III: Dynamic features

Dynamic Feature Definition

Delta Coefficient
low-level descriptor (LLD), capturing dy-
namic changes over time.

An estimate of the first derivative of each




Waveform

Amplitude

0:00 0:50 1:40 230 3:20 410 5:00 5:50 6:40 7:30
Time (s)

(a) Waveform: Amplitude vs Time.

Zero Crossing Rate

[ 5000 10000 15000 20000 25000 30000 35000
Frames

(c) Zero Crossing Rate: Rate vs Frames.

Spectrogram

Frequency (Hz)

20000 +30dB
17500 +20d8
15000
+10d8
12500
+0dB
10000
-10 dB
7500
5000 -20 dB
2500 -30 dB
-40 dB

o
0:00 0:50 140 2:30 320 410 5:00 5:50 6:40
Time (s)

(b) Spectrogram: Frequency vs Time.
MFCCs (Mel-Frequency Cepstral Coefficients)

200

100

-100

-200

-300

MFCC Coefficients

-400

| [
‘ -500
L 0
0 0:50 1:40 2:30 320 410 5:00 5:50

6:40

0:0
Time (s)

(d) MFCCs: Coefficients vs Time.

Fig. 3: Visualization of a sample of features extracted from an audio wave file in the dataset using Librosa.

TABLE IV: Summary of audio features

Descriptor Type Count Details

Low-Level Descrip- | 25
tors (LLDs)

Intensity, zero crossing
rate, MFCC 1-12, FO, FO
envelope, probability of
voicing, LSP frequency 0-
7

Applied to each LLD to
compute key properties.

Statistical Functions | 19

Dynamic Features | 25 Captures temporal
(Delta) changes for each LLD.
Total Features 950 25 x 19 + 25 = 950.

TABLE V: Summary of audio features

III. MODEL DESCRIPTION

Our deep learning is based on the Inception vl architec-
ture. It is designed for recognition of three classes: angry,
happy, and surprised. The Inception module extracts multi-
scale features by processing the input data through four
parallel branches:

e a1 x 1 convolution,

e a1 x 1 convolution followed by a 3 x 3 convolution,

e a 1 x 1 convolution followed by a 5 x 5 convolution,

and

« a max-pooling layer followed by a 1 x 1 convolution.
These branches capture fine-grained and broader patterns in
the input audio features, which are reshaped into a 3D tensor
to include the channel dimension.

The model consists of two stacked Inception modules,
each followed by a max-pooling layer to reduce dimen-
sionality and retain important features. The output of the
final module is flattened and passed through dense layers,
including:

« a dropout layer for regularization, and

o a fully connected layer with 128 neurons for further

feature extraction.

The final output layer uses a softmax activation function to
classify the audio into one of the three emotion classes.

The model is trained using the Adam optimizer and sparse
categorical cross-entropy loss over 40 epochs with a batch
size of 16. Fig. 4 presents the overall model.

IV. RESULTS

Fig. 5 and Fig. 6 shows, respectively, the evolution of
the overall accuracy and loss of our model over epochs
(40 epochs used). Fig. 8 shows the confusion matrix of our
model. Fig. 7 shows the performance of our model. As we
can see it in Fig. 7, regarding the first class (angry) our model
reached 97% of accuracy, 96% of precision, 97% of recall
and 96% of Fl-score. Regarding the second class (happy),
our model reached 91% of accuracy, 99% of precision,
91% of recall and 95% of Fl-score. With respect to the
third class (surprised), our model reached 89% of accuracy,
77% of precision, 82% of recall and 95% of Fl-score. The
overall performance of our model is very satisfactory, which
positions it as a good candidate for emotion recognition.

V. DISCUSSION AND COMPARISON WITH RELATED WORK

Emotion recognition, particularly leveraging audio and
multimodal approaches, has seen significant advancements
with the integration of deep learning and novel frame-
works. Here, we review several recent contributions in the
field, highlighting their methodologies and applications. Jin
and Zai [18] proposed an audiovisual emotion recognition
model based on a bi-layer LSTM and multi-head atten-
tion mechanism. Using the RAVDESS dataset, the authors
demonstrated that combining temporal modeling with atten-
tion mechanisms significantly improves emotion recognition
accuracy by capturing dependencies between audiovisual
signals. Their work highlights the effectiveness of hybrid
architectures in processing multimodal inputs. Raheel [19]
focused on emotion recognition in a 3D space, using EEG
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data alongside tactile-enhanced audiovisual content. By in-
corporating classifier-dependent feature selection, the study
explored the synergy between audio-visual signals and neural
responses, paving the way for novel applications in neuro-
computing and immersive content analysis. Teng et al. [20]
introduced a Transformer-based fusion model for depression
detection. Their approach utilized intra- and inter-emotion
constraints to enhance the fusion of multi-emotional audio-
visual features. The inclusion of homogeneous and diverse
constraints represents a unique contribution, particularly in
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detecting nuanced emotional states relevant to mental health
applications. Sun et al. [21] developed HiICMAE, a hier-
archical contrastive masked autoencoder for self-supervised
audio-visual emotion recognition. Their innovative approach
to leveraging self-supervised learning addressed challenges
in labeled data scarcity, showing promise for robust emotion
recognition in low-resource settings. Ying et al. [22] pre-
sented a multimodal driver emotion recognition algorithm
designed for the Internet of Vehicles platform. By analyzing
both audio and video signals, their work emphasized the
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importance of emotion-aware systems for improving driver
safety and enhancing user experience in connected vehicle
environments. Das et al. [23] proposed AVaTER, a cross-
modal attention framework for fusing audio, visual, and
textual modalities in emotion recognition. This study demon-
strated how aligning information across modalities using at-
tention mechanisms could enhance recognition performance,
particularly in challenging multimodal datasets. Leem et al.
[24] addressed the problem of noisy speech in emotion
recognition. Their selective acoustic feature enhancement
technique, tailored for speech emotion recognition, proved
effective in mitigating noise and improving performance.
This work is particularly valuable for real-world applications
where audio quality is inconsistent. El Haj [25] extended the
latent block model to emotion recognition in audio signals,
offering a probabilistic approach to clustering emotional
patterns. This methodology provided a statistical perspective
to audio-based emotion recognition, highlighting its poten-
tial for interpretability and theoretical robustness. Meng et
al. [26] introduced a masked graph learning method with

recurrent alignment for multimodal emotion recognition in
conversations. By aligning multimodal representations over
temporal sequences, their framework effectively captured
conversational context and emotion dynamics, offering a
robust approach for dialogue-based applications. Wu et al.
[27] proposed an audio multi-view spoofing detection frame-
work that leverages audio-text-emotion correlations. Their
work demonstrated how emotion analysis could strengthen
spoofing detection in audio data, showcasing its potential in
enhancing security and authentication systems. These stud-
ies illustrate the diverse methodologies and applications of
emotion recognition, ranging from driver safety and mental
health to audio spoofing detection and noisy environments.
While models like Transformers, LSTMs, and autoencoders
dominate the technical landscape, their success underscores
the critical role of innovative data fusion techniques and
noise-resilient architectures in advancing the field. Future
research should focus on real-world deployments, handling
data variability, and improving the interpretability of emotion
recognition systems. Our present work aligns closely with the
advancements described in these recent studies. Like these
works, our approach leverages a deep learning architecture
to tackle the challenges of emotion recognition, particularly
in audio data. By using the Inception model, known for
its ability to efficiently capture multi-scale features and
subtle patterns, our framework ensures robust performance
even in complex and noisy forensic audio environments.
In future work, we aim to expand our Inception-based
model by integrating multimodal data, such as video, textual
transcripts, or physiological signals, to improve emotion
recognition accuracy in complex forensic cases where audio
alone may not suffice. Developing a real-time version of
the model could enable on-the-fly emotion detection for
applications like live interrogation analysis or emergency
response systems. Additionally, we plan to adapt the model



for diverse languages and cultural contexts by incorporating
more varied datasets, ensuring broader applicability in global
forensic scenarios.

VI. CONCLUSION

In this work, we proposed an Inception-based deep learn-
ing model for Arabic audio emotion recognition, designed
specifically to address the unique challenges of forensic
applications. Leveraging the Inception architecture’s ability
to efficiently extract multi-scale features, our model demon-
strated robust performance in identifying subtle emotional
cues from audio data, even in complex and variable con-
ditions. The evaluation on a diverse dataset highlighted its
accuracy, adaptability, and potential to handle real-world
forensic scenarios where precision is critical. Our findings
reinforce the importance of advanced neural architectures in
bridging the gap between emotion recognition technology
and forensic science. By providing a reliable and efficient
tool for analyzing emotional states, this model can sig-
nificantly contribute to areas such as interrogations, threat
assessments, and credibility evaluations. While the current
approach focuses on audio data, future research could explore
integrating multimodal inputs, improving explainability, and
enhancing resilience to noisy environments to further its
applicability. This work underscores the potential of deep
learning in transforming forensic investigations and sets
the stage for continued advancements in the field of audio
emotion recognition.
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