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Abstract— Electrical systems keep things running in modern
life, but they often run into problems like imbalances, short
circuits, ground faults, and overloading, which can cause
equipment to break down, fires to break out, and even large-
scale blackouts. To make matters worse, acts of sabotage,
physical damage, or cyberattacks on systems like SCADA
can mess up operations, throw grids off balance, and set off
cascading failures. To avoid these risks, there is a growing need
for smarter tools that can keep track of system performance
and flag potential issues before they get out of hand. In this
paper, we suggest a deep learning model built on the inception
architecture, designed to monitor electrical systems, call out
potential security faults, and spot malicious actions. Taking
advantage of deep learning, our approach helps increase fault
prediction accuracy and keep operations on track.

Index Terms— Electrical systems, Fault, Detection, Deep
Learning, Inception, Forensics, Cybersecurity.

I. INTRODUCTION

Power systems face many threats that can severely damage
equipment and disrupt everyday life [1]-[3]. Short circuits
harm equipment, cause power outages, and even start fires
or trigger explosions. Ground faults wear out insulation and
increase the risk of electric shock or fire. Overloading puts
strain on transformers and generators, making them overheat,
break down faster, or trip protective devices, which cuts
off power and leads to blackouts. Voltage imbalances make
equipment run inefficiently, heat up, and wear out earlier
than expected. Cyberattacks on SCADA systems [4], [5], for
example, let hackers take over operations, shut down grids,
destabilize systems, or steal and corrupt important data.
Physical sabotage or vandalism breaks or destroys critical in-
frastructure like substations and transformers, leaving entire
regions without power for long periods. Aging infrastructure
adds to these risks, as old components break down more
easily, causing outages, driving up maintenance costs, and
creating safety hazards. Cascading failures, often triggered
by grid instability, quickly snowball into regional or even
nationwide blackouts, which disrupt critical services and
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daily routines. Insider threats, who are generally authorized
personnel, can misuse their access to harm equipment or
cause long-term security problems. Together, these threats
show how vulnerable electrical systems are and why it is so
important to protect and monitor them to avoid large-scale
damage. Finding electrical problems early makes life a lot
easier and safer. It helps stop small issues from turning into
big, expensive ones, saving money on repairs and avoiding
the hassle of replacing damaged equipment. We can plan
maintenance ahead of time instead of dealing with sudden
breakdowns, which keeps things running without unexpected
delays. Fixing these problems early also brings down main-
tenance costs and makes sure everything stays in good shape.
On top of that, it helps prevent dangerous situations like fires,
short circuits, or electric shocks, which keeps everyone safe.
When we sort out issues like overheating or voltage problems
quickly, our equipment works better, uses less energy, and
does not drive up electricity bills. In addition, taking care of
small faults helps equipment last longer, so we do not have
to replace it as often. Early detection also prevents power
outages from disrupting work or daily life by keeping the
system stable and reliable. That also allows to stay on the
right side of safety rules, avoiding fines and making sure that
operations stay legal. In the end, catching electrical problems
early saves us time, money, and stress while making sure
everything runs smoothly and safely. Deep learning brings
plenty of advantages when it comes to strengthening physical
security for electrical systems. First, it helps us identify
threats on-time, like someone acting suspicious, so that we
can manage the problem. Second, it reduces false alarms
by learning the difference between normal activity and real
risks, saving us time and effort. Third, it lets us predict
potential problems by spotting patterns and warning us about
issues before they happen. Fourth, it monitors everything
around the clock, so we don’t need someone constantly
watching over it. This gives us peace of mind knowing the
system is always on guard. Fifth, it boosts access control with
tools like facial recognition or other checks to ensure only au-
thorized people can get in. Sixth, it helps us identify insider
threats, flagging unusual or risky behavior from people who
are supposed to have access. Seventh, it speeds up response
time by highlighting what needs immediate attention and
giving us clear steps to resolve it. Eighth, it scales easily as
systems grow, handling more data and infrastructure. Ninth,
it adapts to new threats, continuously learning and improving
to stay ahead of evolving risks. Finally, it works with what
we already have, so we can upgrade security [6] without



overhauling the entire setup. In short, deep learning makes
protecting electrical systems easier, faster, and more reliable,
giving us the tools we need to stay safe and secure. In this
paper, we explore an inception-based deep learning model
[71, [8] to predict faults in electrical systems. Inception
models stand out because of their parallel architecture, where
multiple convolutional filters of different sizes run side by
side in the same layer. This setup allows the model to pick
up on both fine details and broader patterns at the same
time, making it highly effective at capturing complex features
in data. These models have already proven their worth in
other fields, such as image classification, medical diagnosis,
and object detection, where they have achieved remarkable
accuracy and reliability. When it comes to securing electrical
plants and systems, inception models can act by spotting
problems early and flagging them before they escalate into
major problems. They can help us stay ahead of faults,
ensuring that problems are fixed on time to avoid costly
downtime or safety risks. Their ability to handle complex
data and adapt to different situations makes them a valuable
tool for keeping critical infrastructure safe and reliable. By
applying this powerful deep learning approach, we aim to
improve fault prediction and strengthen the overall security
of electrical systems.

II. EXPERIMENT
A. Dataset

Our dataset is a subset of the dataset described in [9].
The dataset focuses on transmission lines, which transfer
alternating current (AC) or direct current (DC) over long
distances to connect power plants to substations or deliver
electricity to various users. It includes details about different
types of lines—overhead, underground, and submarine—and
highlights key design factors such as voltage, current capac-
ity, and insulation to ensure reliable performance. The dataset
is designed to identify and classify faults in the system, with
five possible fault types:

e Class 0: No Fault

e Class 1: Fault between Phase A and Ground

e Class 2: Fault between Phase A and Phase B

e Class 3: Fault Phases A,B and Ground

o Class 4: Fault between three Phases: A, B, and Ground

The dataset supports the development of models to moni-
tor systems, spot faults quickly, and ensure safe and efficient
power delivery. The dataset contains 6728 entries with 11
features, 5382 out of the entries are used for training and
1346 for tests. Fig. 1 shows the class distribution in the used
dataset.

B. Model architecture

Our model is basically a simplified Inception-based neural
network with five output classes. It leverages the strengths
of the Inception architecture by employing parallel con-
volutional paths within its single Inception block, providing
multi-scale feature extraction capabilities. Below is a detailed
breakdown of the model:

Class 0

Class 1

Classe 4
Class 2

Class 3

Fig. 1: Class distribution in the dataset

o Input Layer:

— Accepts reshaped input data of shape
(input_dim, 1), where input_dim represents
the sequence length, and 1 is the number of
channels (e.g., for 1D data like time-series or
audio).

« Inception Block:

— A single block processes the input using four
parallel paths:

* Path 1: A 1 x 1 convolutional layer to extract
fine-grained features.

x Path 2: A 1 x 1 convolution followed by a 3 x 3
convolution to capture medium-scale features.

+ Path 3: A 1x 1 convolution followed by a 5 x 5
convolution to capture larger-scale patterns.

x Path 4: A 3 x 3 max-pooling layer followed
by a 1 x 1 convolution to focus on local and
contextual features.

— The outputs of these four paths are concatenated
along the feature axis, resulting in a rich represen-
tation of multi-scale features.

+ Max Pooling:

— After the Inception block, a MaxPoolinglD layer
with a pool size of 2 reduces the spatial dimensions,
capturing dominant features and lowering compu-
tational complexity.

« Flatten Layer:

— Flattens the feature map into a one-dimensional

vector to prepare it for the dense layers.
« Dropout:

— A dropout layer with a rate of 0.3 helps prevent
overfitting by randomly deactivating 30% of neu-
rons during training.

+ Dense Layer:



— A fully connected layer with 128 neurons and
ReLU activation extracts high-level patterns from
the flattened features.

o Output Layer:

— The final dense layer with 5 neurons (correspond-
ing to the number of classes) and softmax activation
outputs probabilities for each class.

o Optimizer: Adam optimizer ensures efficient conver-
gence with adaptive learning rates.

o Loss Function: Sparse Categorical Crossentropy is
used for multi-class classification.

e Metrics: Accuracy is tracked during training and vali-
dation.

o Training Setup:

— Batch size: 20

— Epochs: 100

— Validation split: 20% of the training data is used
for validation.

Figure 2 illustrates the architecture of our model.

C. Used metrics

In our experiment, we used the following metrics.

1) Accuracy: Accuracy measures the proportion of cor-
rectly classified instances among the total instances. It is a
general measure of how often the model makes the correct
prediction.

TP+TN

A —
WY = P Y TN+ FP+ FN

Where:

e T'P: True Positives
e T'N: True Negatives
o F'P: False Positives
o F'N: False Negatives

2) Precision: Precision measures the proportion of true
positive predictions out of all positive predictions made by
the model. It reflects how precise the model is in identifying
the positive class.

TP
TP+ FP

3) Recall: Recall, also known as sensitivity or true posi-
tive rate, measures the proportion of true positive predictions
out of all actual positive instances. It shows how well the
model identifies the positive class.

Precision =

TP
TP+ FN

4) F1-Score: The Fl-score is the harmonic mean of
Precision and Recall. It provides a single score that balances
the trade-off between precision and recall, especially useful
when the dataset is imbalanced.

Recall =

Fl-Score — 2 - Precision - Recall

Precision + Recall

III. RESULTS

Fig. 3 shows the training progression over epochs of the
accuracy and loss.

Fig. 4 shows the overall confusion matrix.

Fig. 5 displays the confusion matrices for each class in
the dataset (Class O to Class 4). Each matrix shows the
performance of the model in distinguishing one class versus
all others.

Fig. 6 shows the accuracy rate for each class.

Fig. 7 shows the precision rate for each class.

Fig. 8 shows the recall rate for each class.

Fig. 9 shows the Fl-score rate for each class.

As we can see it through the four last figures, for all
classes, the accuracy rate is above 92.90%, reaching 100.00%
for Class 0. The precision rate is always above 91.02%,
reaching 100.00% for Class 4 and 99.31% for Class 0. The
recall rate is always above 93.32%, reaching 99.65% for
Class 1. The Fl-score is always above 93.25%, reaching
99.65% for Class 0. These outcomes confirm the effective-
ness of the proposed model.

IV. RELATED WORK, DISCUSSION AND FUTURE
DIRECTIONS

Many studies showcase the powerful role of Al and deep
learning in solving complex problems across diverse fields.
Pereira et al. [10] use Transformers and LSTMs with a
recursive multi-step forecasting approach to predict influent
conductivity in wastewater treatment plants, achieving high
accuracy and enabling proactive water salinity management.
Yao et al. [11] propose a hybrid model combining a 1D-
CNN and LSTM (SLSTM-TCNN) to analyze plant electri-
cal signals under salt stress, coupled with a salt tolerance
classification model, improving the efficiency of identifying
salt-tolerant crops. Chen et al. [12] develop a physics-
guided multi-agent reinforcement learning algorithm (PG-
MA2TD3) for active voltage control in power grids, inte-
grating global voltage sensitivity to coordinate PV inverters,
achieving robust performance in minimizing voltage fluc-
tuations. Mohammadi et al. [13] utilize transfer learning
with the GoogleNet architecture to detect high-impedance
faults in electrical systems by converting harmonic data
into images using the Wigner—Ville distribution, enabling
fault detection with minimal training data. Carrati et al.
[14] apply convolutional autoencoders to detect anomalies
in industrial electrical systems using only current intensity
data from one phase, reducing false positives and improving
fault detection efficiency. Lastly, El-Telbany [15] employs
LSTMs for short-term electrical load forecasting, demon-
strating improved accuracy by capturing temporal dependen-
cies in smart meter data, aiding smarter energy management.
Together, these studies highlight how deep learning models,
tailored to specific challenges, provide robust, data-driven
solutions across industries. In this study, we propose an
effective Inception-based deep learning model to monitor
electrical systems, detect faults in real time, and identify
security anomalies. The model leverages Inception’s parallel
convolutional layers [16]-[18] to capture both fine details and
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Fig. 2: Model Architecture

broader patterns, making it well-suited for complex electri-
cal signals. Our approach addresses critical challenges like
timely fault detection and anomaly identification, ensuring
small issues do not escalate into major failures. It reduces
false alarms, focuses on real risks, and scales effectively
to handle large datasets. By combining deep learning with
Inception’s advanced feature extraction, this model enhances
the reliability, efficiency, and security of electrical systems.
Moving forward, this model could be integrated with real-
time monitoring systems to enable continuous, autonomous
operation. Expanding the training dataset to include more
diverse fault scenarios and environmental conditions could
further enhance its robustness. Additionally, incorporating
explainable AI (XAI) techniques [19]-[21] could provide
deeper insights into model predictions, making it easier for
operators to trust and act on its outputs. Finally, applying
this approach to other critical infrastructure, such as water or
transportation systems, could broaden its impact and utility.

V. CONCLUSION

To sum up, our inception-based deep learning model has
shown that it can reliably predict faults in electrical systems,
helping us tackle problems before they get out of hand.
Thanks to its parallel architecture, the model can pick up both
fine details and big-picture patterns, making it an adequate
tool for identifying and preventing potential issues. This
study shows that deep learning is a practical and powerful
solution to keep electrical systems secure, to fix problems
on time, and to make operations more efficient in general.

Future work will include integrating the model with real-time
monitoring, expanding the dataset for diverse fault scenarios,
applying transfer learning to other infrastructure domains,
and using explainable Al to improve transparency and trust
in predictions.
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