
RansFighter: a GRU-based Tool for Ransomware Detection

Jaouhar Fattahi1 ; Mohamed Mejri1 ; Ridha Ghayoula2 ; Sawssen Jalel3;
Laila Boumlik1 and Feriel Sghaier4

Abstract— In the current landscape of IT, ransomware at-
tacks pose a major threat to cybersecurity resulting in sig-
nificant monetary losses and data breaches. The detection of
ransomware in time presents a challenge due to its constant evo-
lution and complex strategies for escaping detection. This study
introduces a deep learning tool —named RansFighter—based
on Gated Recurrent Unit (GRU) specifically developed for
ransomware detection. Our model shows, at test time, an
Accuracy of 96.67%, a Precision of 97.01%, a Recall of 96.37%,
an F1-Score of 96.69% and an Area Under the Curve (AUC) of
96.67%. It showcases the potential of GRUs as valuable assets
to safeguard systems against ransomware threats.

Index Terms— Ransomware, Detection, Deep Learning, Cy-
bersecurity.

I. INTRODUCTION

Ransomware attacks have become increasingly common
[1]–[3]. They are considered one of the cybersecurity threats
of our era. Servers and computers affected by ransomware
face a situation where their data is encrypted by hackers
using many techniques like fishing [4]–[6]. They are asked
to pay a ransom for its decryption. This has led to operational
losses not only for individuals but also for organizations and
governmental bodies. With the rise in both the frequency
and complexity of these attacks, the usual security defense
mechanisms are no longer sufficient. Detecting ransomware
poses a challenge because cybercriminals constantly adapt
their tactics to evade detection measures effectively. Current
ransomware strains use methods like encryption and obfusca-
tion to conventional detection systems that rely on signatures
or rules. Moreover, ransomware can infect networks quickly
and cause harm in a short period of time [7], [8]. These obsta-
cles underscore the importance of having detection tools that
can identify ransomware. Therefore, it is crucial to develop
systems that can detect them in real time in order to eliminate
their risks. Machine learning and deep learning methods have
become assets in bolstering cybersecurity [9]–[13] in such a
scenario. In this context, Gated Recurrent Unit (GRU) [14]–
[16] has become quite popular due to its effectiveness in
handling both sequential data and tabular data. This type

1Jaouhar Fattahi and Mohamed Mejri and Laila Boumlik are with
the Department of Computer Science and Software Engineering, Laval
University, Quebec, Canada. Jaouhar.Fattahi.1@ulaval.ca;
Mohamed.Mejri@ift.ulaval.ca;
Laila.Boumlik.1@ulaval.ca

2Ridha Ghayoula is with the Faculty of Engineering, University of Monc-
ton, New Brunswick, Canada. Ridha.Ghayoula@umoncton.ca

3Sawssen Jalel is with TEKUP University, Tunis, Tunisia.
Sawssen.Jalel@tek-up.tn

4Feriel Sghaier is with the Carthage National En-
gineering School, Carthage University, Tunis, Tunisia.
Feriel.Sghaier@enicar.ucar.tn

of data includes things like system logs network behavior
and patterns which often hold clues about their activities.
GRUs stand out because of their gating mechanisms that
allow them to grasp both prolonged connections within this
kind of information making them a choice for detecting
ransomware incidents. Traditional methods typically require
complex feature engineering to function, however, GRUs
enable models to extract pertinent features from data and
predict the presence of ransomware without the necessity
for other manual and unreliable means of surveillance.
The GRU model was introduced as an alternative to Long
Short-Term Memory neural networks (LSTMs) [17]–[20]
and incorporates two gates —the update gate and the reset
gate—to control information flow effectively. This allows
the model to preserve crucial details while filtering out
unnecessary or outdated data elements without losing track of
essential information in between layers in a neural network
setup. GRUs possess attributes that render them well suited
for real time uses like identifying ransomware where both
accuracy and speed are of importance. In this study, we
suggest a GRU-powered tool to spot incidents by making use
of its abilities in analyzing data to spot suspicious actions
effectively. In this paper, we propose a GRU-based tool,
named Ransfighter, crafted to go through system records and
network traffic details to uncover related trends that point
ransomware activities. Through the integration of training
methods and efficiency enhancements, our tool attains a high
accuracy rate along with high precision, recall, AUC and F1-
score rates, rendering it a reliable option for practical uses.

II. GRU MODELS

The Gated Recurrent Units have been created as an
alternative to LSTMs—while proposing a more reduced
complexity and fewer gates—and to overcome the limitations
of conventional RNNs [21], reputed as having a too short
memory. A GRU uses two key gates: the update gate and
the reset gate, which govern the flow of information through
the network.

A. Update Gate (zt)

The update gate decides how much of the previous hidden
state (ht−1) should be kept and how much of the new
information (h̃t) should be integrated. This is expressed by
Equation 1.

zt = σ(Wzxt + Uzht−1 + bz) (1)

Where :



• xt: Input at time t.
• ht−1: Previous hidden state.
• Wz, Uz: Weight matrices.
• bz: Bias.
• σ: Sigmoid activation function, which outputs values

between 0 and 1.

B. Reset Gate (rt)

The reset gate decides how much of the past information
should be forgotten when defining the new candidate of the
hidden state (h̃t). This is expressed by Equation 2.

rt = σ(Wrxt + Urht−1 + br) (2)

C. Candidate Hidden State (h̃t)

The candidate hidden state is determined using the reset
gate. The reset gate rt defines how much of the previous
hidden state to use. This is expressed by Equation 3.

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (3)

Where :
• ⊙: Element-wise product.
• tanh: Hyperbolic tangent activation function.

D. Final Hidden State (ht)

The final hidden state combines the previous hidden state
(ht−1) and the candidate hidden state (h̃t), weighted by the
update gate. This is expressed by Equation 4.

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (4)

Table I shows some advantages of the GRU model com-
pared to other comparative models.

III. EXPERIMENT

A. Dataset

In our experiment, we utilized the Ransomware Detection
Dataset described in [26]. The dataset comprises 62,485
entries, each with 15 features of type int64. Table II sum-
marizes the dataset features and their descriptions. The
dataset includes a single binary class labeled as ”Benign,”
where ’0’ indicates ”Not Ransomware” and ’1’ represents
”Ransomware”. In our experiment, we used a sample of
3000 entries selected randomly while conserving the sam-
ple virtually balanced (”Not Ransomware” : 1495 entries,
”Ransomware” : 1505 entries) as described in Fig. 1. Fig.
2 shows the data distribution among training, validation and
test.

B. Model architecture

Our model architecture consists of a GRU-based one. Its
first layer is an input one which accepts a 15-dimensional
feature vector. The input is reshaped into a 2D tensor with
dimensions (15, 1) to make it compatible with the GRU
layer. The GRU layer, consisting of 64 units, processes this
sequential data and outputs a feature representation. This rep-
resentation is passed to a fully connected dense layer with 32

Fig. 1: Class distribution

Fig. 2: Dataset repartition

units and ReLU activation for further processing. A dropout
layer with a 30% rate is applied to mitigate overfitting. The
final output layer, comprising a single neuron with sigmoid
activation, generates a probability for binary classification.
The model is compiled using the Adam optimizer and a
binary cross-entropy loss. Fig. 3 shows the architecture of
our model.

C. Used metrics

To assess our model, we used the following metrics to
assess our model: Accuracy, F1-Score, Precision, Recall, and
AUC (Area Under the Curve).

• Accuracy : calculates the rate of accurately predicted
instances (true positives and true negatives) to the total
number of predictions, as expressed by Equation 5.



TABLE I: Advantages of GRU models compared to other models.

Aspect Advantages of GRU models Comparison to other models
Simplicity GRUs have a simpler architecture with fewer param-

eters, reducing computational complexity.
LSTMs [17], [18] have more gates, increasing com-
plexity and training time.

Training efficiency GRUs train faster due to fewer parameters and lower
memory requirements.

LSTMs and Transformers require more resources and
training time.

Handling of sequential data GRUs effectively capture temporal dependencies in
sequential data.

Fully connected models lack this capability; LSTMs
perform similarly but are more complex.

Avoiding overfitting The reduced number of parameters in GRUs lowers
the risk of overfitting on small datasets.

Transformers may overfit [22] due to their large
number of parameters.

Performance on Small Datasets GRUs perform well with limited data due to their
simplicity and efficient learning.

LSTMs and Transformers often require larger
datasets for optimal performance [23], [24].

Memory usage GRUs use less memory, making them suitable for
resource-constrained environments.

LSTMs and Transformers are more memory-
intensive.

Gradient flow GRUs mitigate the vanishing gradient problem effec-
tively, ensuring stable training.

Vanilla RNNs suffer from vanishing gradients [25];
LSTMs handle it similarly but with more gates.

TABLE II: Dataset features

Feature Name Description
Machine The type of target machine (architecture) for which the file is intended.

DebugSize Size of the debug information.

DebugRVA Relative Virtual Address (RVA) of the debug information.

MajorImageVersion The major version number of the image.

MajorOSVersion The major version number of the required operating system.

ExportRVA RVA of the export table.

ExportSize Size of the export table.

IatVRA RVA of the Import Address Table (IAT).

MajorLinkerVersion The major version number of the linker.

MinorLinkerVersion The minor version number of the linker.

NumberOfSections The number of sections in the file.

SizeOfStackReserve The size of the stack to reserve.

DllCharacteristics Characteristics of the DLL.

ResourceSize Size of the resources.

BitcoinAddresses Presence of Bitcoin addresses within the file (usually indicator of ransomware).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

• Precision : calculates the ratio of true positive instances
to the total number of positives (true and false), as
expressed by Equation 6.

Precision =
TP

TP + FP
(6)

• Recall : calculates the ratio of true positive instances to
the total number of true positives and false negatives,
as expressed by Equation 7.

Recall =
TP

TP + FN
(7)

• F1-Score : is the balanced harmonic mean of Precision
and Recall as expressed by Equation 8.

F1-Score = 2 · Recall · Precision
Recall + Precision

(8)

• AUC : depicts the area under the curve, which reflects
the ability of the model to distinguish between classes.

In all metrics, TP denotes the true positives, TN denotes the
true negatives, FP denotes the false positives and FN denotes
the false negatives.

IV. RESULTS

Table of figures III shows the evolution of the used
metrics over epochs at the training time (200 epochs used).
Fig 4 presents the confusion matrix. Fig. 5 presents the
performance metrics of our model at test time reaching an
Accuracy of 96.67%, a Precision of 97.01%, a Recall of
96.37%, an F1-Score of 96.69% and an AUC of 96.67%.

V. DISCUSSION AND COMPARISON WITH RELATED WORK

Recent advancements in ransomware detection have in-
troduced many interesting and innovative approaches and
datasets to tackle evolving threats. Matthew et al. [27]
proposed Pulse, a method utilizing Transformer models to
classify functions in assembly language, offering a robust
solution for detecting zero-day ransomware. Complementing
this, Manabu et al. introduced RanSMAP [28], an open
dataset capturing ransomware storage and memory access
patterns, enabling the development of deep learning-based
detectors. On mobile platforms, Alamgir et al. [29] demon-
strated the effectiveness of ensemble machine learning for



Fig. 3: Model architecture

superior Android ransomware detection. Lastly, Jennie et al.
[30] explored the use of hardware performance counters on
non-virtualized systems, presenting an efficient hardware-
level approach for classifying ransomware activity. Our
GRU-based tool stays among the competitive models for
ransomware detection, distinguished by its simplicity, high
performance, and reduced training time. Its streamlined
architecture ensures efficient processing while maintaining
robust detection capabilities, making it a practical and ef-
fective solution compared to more complex alternatives. Our
tool, RansFighter, is not designed to rely on a single model.
Instead, it is designed to integrate other deep learning mod-
els that demonstrate effectiveness in ransomware detection,
which are currently being explored and are intended to work
together.

TABLE III: Model training and metric evolution over epochs

Fig. 4: Confusion matrix (600 entries)

VI. CONCLUSION

This study showcases the effectiveness of our tool based
on gated recurrent unit models in detecting ransomware with
excellent results observed in test time. The GRUs capability
to capture ransomware activities positions it as a good can-
didate for real-time ransomware detection. However, due to
the dynamic nature of ransomware threats and their evolving
patterns over time, cybersecurity experts are called to stay
vigilant and make perpetual adjustments in their strategies,
coupled with a constant state of alertness to fend against
potential vulnerabilities in systems across various platforms.
In this context, future efforts will focus on enhancing the
detection ability to react to threats while integrating data
sources such as logs and network traffic to reach greater
resilience.



Fig. 5: Model performance

REFERENCES

[1] M. Ryan, Ransomware Revolution: The Rise of a Prodigious Cyber
Threat, vol. 85 of Advances in Information Security. Springer, 2021.

[2] M. U. Rana, M. A. Shah, M. A. A. Naeem, and C. Maple, “Ran-
somware attacks in cyber-physical systems: Countermeasure of attack
vectors through automated web defenses,” IEEE Access, vol. 12,
pp. 149722–149739, 2024.

[3] J. Ferdous, M. R. Islam, A. Mahboubi, and M. Z. Islam, “Ai-
based ransomware detection: A comprehensive review,” IEEE Access,
vol. 12, pp. 136666–136695, 2024.

[4] H. L. Bouder, Symmetric cryptography applied in different contexts:
physical attacks and ransomware. 2023.

[5] M. G. Gaber, M. Ahmed, and H. Janicke, “Zero day ransomware
detection with pulse: Function classification with transformer models
and assembly language,” Comput. Secur., vol. 148, p. 104167, 2025.

[6] G. Kim, S. Kang, S. Baek, K. Kim, and J. Kim, “How to decrypt files
encrypted by rhysida ransomware without the attacker’s private key,”
Comput. Secur., vol. 151, p. 104340, 2025.

[7] S. Ali, J. Wang, V. C. M. Leung, and A. Ali, “Decentralized ran-
somware recovery network: Enhancing resilience and security through
secret sharing schemes,” in Proceedings of the 9th International Con-
ference on Internet of Things, Big Data and Security, IoTBDS 2024,
Angers, France, April 28-30, 2024 (A. Kobusinska, A. Jacobsson, and
V. Chang, eds.), pp. 294–301, SCITEPRESS, 2024.

[8] M. Cen, F. Jiang, X. Qin, Q. Jiang, and R. Doss, “Ransomware early
detection: A survey,” Comput. Networks, vol. 239, p. 110138, 2024.

[9] J. Fattahi, “Machine Learning and Deep Learning
Techniques used in Cybersecurity and Digital Forensics: a
Review,” arXiv e-prints, p. arXiv:2501.03250, Dec. 2024.
https://ui.adsabs.harvard.edu/abs/2025arXiv250103250F.

[10] J. Fattahi, M. Mejri, and M. Ziadia, “Extreme gradient boosting
for cyberpropaganda detection,” in New Trends in Intelligent Soft-
ware Methodologies, Tools and Techniques - Proceedings of the
20th International Conference on New Trends in Intelligent Software
Methodologies, Tools and Techniques, SoMeT 202, Cancun, Mexico,
21-23 September, 2021 (H. Fujita and H. Pérez-Meana, eds.), vol. 337
of Frontiers in Artificial Intelligence and Applications, pp. 99–112,
IOS Press, 2021.

[11] J. Fattahi, F. Sghaier, M. Mejri, R. Ghayoula, E. Pricop, and B. E.
Lakdher, “Handwritten signature recognition using parallel cnns and
transfer learning for forensics,” in 10th International Conference
on Control, Decision and Information Technologies, CoDIT 2024,
Vallette, Malta, July 1-4, 2024, pp. 1697–1702, IEEE, 2024.

[12] J. Fattahi, B. E. Lakdher, M. Mejri, R. Ghayoula, E. Manai, and
M. Ziadia, “Fingfor: a deep learning tool for biometric forensics,” in
10th International Conference on Control, Decision and Information
Technologies, CoDIT 2024, Vallette, Malta, July 1-4, 2024, pp. 1667–
1672, IEEE, 2024.

[13] E. Manai, M. Mejri, and J. Fattahi, “Helping cnas generate cvss scores
faster and more confidently using xai,” Applied Sciences, vol. 14,
no. 20, 2024.

[14] J. Jagadeesan, S. Nandhini, and B. Sathiyaprasad, “Classification of
malware for security improvement in iot using heuristic aided adaptive
multi-scale and dilated resnext with gated recurrent unit,” Appl. Soft
Comput., vol. 163, p. 111838, 2024.

[15] W. Feng, Y. Wu, and Y. Fan, “A new method for the prediction of
network security situations based on recurrent neural network with
gated recurrent unit,” Int. J. Intell. Comput. Cybern., vol. 13, no. 1,
pp. 25–39, 2020.

[16] J. Fattahi, M. Ziadia, and M. Mejri, “Cyber Racism Detection Using
Bidirectional Gated Recurrent Units and Word Embeddings,” in New
Trends in Intelligent Software Methodologies, Tools and Techniques
- Proceedings of the 20th International Conference on New Trends
in Intelligent Software Methodologies, Tools and Techniques, SoMeT
202, Cancun, Mexico, 21-23 September, 2021 (H. Fujita and H. Pérez-
Meana, eds.), vol. 337 of Frontiers in Artificial Intelligence and
Applications, pp. 155–165, IOS Press, 2021.

[17] L. Arras, J. A. Arjona-Medina, M. Widrich, G. Montavon, M. Gill-
hofer, K. Müller, S. Hochreiter, and W. Samek, “Explaining and
interpreting lstms,” in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning (W. Samek, G. Montavon, A. Vedaldi, L. K.
Hansen, and K. Müller, eds.), vol. 11700 of Lecture Notes in Computer
Science, pp. 211–238, Springer, 2019.

[18] G. V. Houdt, C. Mosquera, and G. Nápoles, “A review on the long
short-term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–
5955, 2020.

[19] J. Fattahi, M. Mejri, M. Ziadia, and R. Ghayoula, “Spamdl: A high
performance deep learning spam detector using stanford global vectors
and bidirectional long short-term memory neural networks,” in New
Trends in Intelligent Software Methodologies, Tools and Techniques -
Proceedings of the 21st International Conference on New Trends in In-
telligent Software Methodologies, Tools and Techniques, SoMeT 2022,
Kitakyushu, Japan, 20-22 September, 2022 (H. Fujita, Y. Watanobe,
and T. Azumi, eds.), vol. 355 of Frontiers in Artificial Intelligence and
Applications, pp. 143–162, IOS Press, 2022.

[20] J. Fattahi and M. Mejri, “Damaged fingerprint recognition by con-
volutional long short-term memory networks for forensic purposes,”
in 5th IEEE International Conference on Cryptography, Security and
Privacy, CSP 2021, Zhuhai, China, January 8-10, 2021, pp. 193–199,
IEEE, 2021.

[21] M. Ibrahim and R. Elhafiz, “Modeling an intrusion detection using
recurrent neural networks,” Journal of Engineering Research, vol. 11,
no. 1, p. 100013, 2023.

[22] P. Zavoral, D. Varis, and O. Bojar, “Adversarial testing as a tool for
interpretability: Length-based overfitting of elementary functions in
transformers,” CoRR, vol. abs/2410.13802, 2024.

[23] C. Kuo and G. Chen, “Automatic sleep staging based on a hybrid
stacked LSTM neural network: Verification using large-scale dataset,”
IEEE Access, vol. 8, pp. 111837–111849, 2020.

[24] R. J. M. Veiga and J. M. F. Rodrigues, “Fine-grained fish classification
from small to large datasets with vision transformers,” IEEE Access,
vol. 12, pp. 113642–113660, 2024.

[25] S. Noh, “Analysis of gradient vanishing of rnns and performance
comparison,” Inf., vol. 12, no. 11, p. 442, 2021.

[26] A. Bensalah, “Ransomware Detection Dataset,” Online.
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-
data-set. Last accessed: January 6, 2025.

[27] M. G. Gaber, M. Ahmed, and H. Janicke, “Zero day ransomware
detection with pulse: Function classification with transformer models
and assembly language,” Comput. Secur., vol. 148, p. 104167, 2025.

[28] M. Hirano and R. Kobayashi, “Ransmap: Open dataset of ransomware
storage and memory access patterns for creating deep learning based
ransomware detectors,” Comput. Secur., vol. 150, p. 104202, 2025.

[29] M. A. Hossain, T. Hasan, F. Ahmed, S. H. Cheragee, M. H. Kanchan,
and M. A. Haque, “Towards superior android ransomware detection:
An ensemble machine learning perspective,” Cyber Secur. Appl., vol. 3,
p. 100076, 2025.

[30] J. Hill, T. O. Walker, J. A. Blanco, R. W. Ives, R. N. Rakvic, and B. Ja-
cob, “Ransomware classification using hardware performance counters
on a non-virtualized system,” IEEE Access, vol. 12, pp. 63865–63884,
2024.


