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Abstract—Urban traffic congestion remains an ongoing issue
that requires advanced traffic management solutions. Accurate
traffic forecasting plays a crucial role in Intelligent Trans-
portation Systems, helping to mitigate congestion and improve
mobility. Traditional machine learning approaches have been
widely used for prediction tasks, often relying on large volumes
of historical data for training. However, real-time adaptability
is essential for dynamic traffic conditions. In this study, we
leverage real-time traffic data and employ ADAptive GRAdient
Descent, an online learning method that adaptively adjusts
learning rates, allowing efficient updates as new data become
available. To evaluate its performance, we implemented our
approach on traffic data from a network of streets in Muscat,
Oman, demonstrating its ability to provide accurate and timely
congestion forecasts.

Index Terms—Online Learning Methods, Real-Time Data,
Traffic Congestion Prediction, ADAptive GRAdient Descent.

I. INTRODUCTION

Traffic congestion is considered one of the major ongoing
issues in the modern world. It has been increasing in both de-
veloped and developing countries, representing an undeniable
threat to the quality of life. Traffic congestion occurs as a result
of a demand-supply imbalance in the transportation networks.
When the number of vehicles on the road increases or the
capacity of roadways diminishes for a variety of reasons, traffic
flows slow down. It causes plenty of issues, including longer
travel times for drivers, higher fuel consumption, greenhouse
gas emissions, and greater vehicular crash rates.

That is why traffic congestion remains a critical and ongoing
research topic in Intelligent Transportation Systems (ITSs).
The most effective way to manage this issue is through pre-
vention, which requires accurately predicting traffic congestion
and anticipating it before it occurs.

Numerous machine learning approaches have been used to
predict traffic. However, a significant limitation of these meth-
ods is that they rely on historical datasets to train the model
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and adjust their parameters based on the entire dataset at
once. In contrast, online learning techniques offer a dynamic
alternative by continuously updating their parameters as new
data becomes available. This sequential adaptation enables
real-time updates and rapid predictions, making online learn-
ing particularly well-suited for real-time applications. These
methods have been widely applied in various fields, including
virtual energy storage management, medical data analysis, and
flight control.

In this study, we focus on the use of online learning techniques
for traffic congestion prediction. Specifically, ADAptive GRA-
dient Descent (ADAGRAD), which effectively adapts learning
rates based on past gradients, making it particularly advan-
tageous for handling real-time traffic data. We use Google
Maps API to collect real-time data. Our model’s prediction
results are afterward compared with actual traffic conditions,
demonstrating precise and reliable prediction results.

The paper is organized as follows: Section 2 presents a
literature review of the existing methods including machine
learning methods and online learning methods. Section 3
describes our decentralized model developed to manage traffic
congestion, the principle of features generation and prediction
horizons calculation, and the use of ADAGRAD in traffic
prediction. Section 4 presents the case study of Muscat,
describing the studied road network. In section 5, we show
the results generated by our model. Finally, Section 6 presents
the conclusions and some perspectives.

II. STATE OF THE ART

The study of traffic prediction has been extensively explored
in the literature. Within this context, models addressing traffic
congestion can be categorized into three main classes:

o Traditional Models: This category includes statistical
models such as Autoregressive Moving Average (ARMA)
[Mai et al., 2014], [Shuona and Zeng, 2014], Autoregres-
sive Integrated Moving Average (ARIMA) [Jian et al.,



2020], [Irhami and Farizal, 2021], Seasonal ARIMA
(SARIMA) [Sadeghi Gargari et al., 2022], [You et al.,
2022], and the Kalman Filter (KF) [Momin et al., 2023],
[Emami et al., 2020], among others.

e Machine Learning Models: This category encompasses
Linear Regression models [Hongyu et al., 2002], [Hongyu
et al., 2003], Support Vector Machines (SVM) [Toan
and Truong, 2021], [Guancen et al., 2022], Decision
Trees (DTs) [Crosby et al., 2016], [Alajali et al., 2018],
and their ensemble variants, such as Random Forests
(RFs) [Yifan et al., 2022], [Shaofu and Hengyu, 2020]
and Gradient Boosting Machines (GBMs) [Lartey et al.,
2021], [Menguc et al., 2023]. It also includes k-Nearest
Neighbors (k-NN) [Zhuang and Cao, 2023], [Mladen-
ovi¢ et al., 2022] and Support Vector Regression (SVR)
[Guancen et al., 2022], etc.

o Deep Learning Models: As a subfield of machine learn-
ing, deep learning models include Feedforward Neural
Networks, Recurrent Neural Networks (RNNs) [Park and
Rilett, 1999], [Wisitpongphan et al., 2012], specifically
Long Short-Term Memory (LSTM) [Anwar et al., 2023],
[Naheliya et al., 2024] and Gated Recurrent Units (GRU)
networks [Saini and Sharma, 2022], [Jeong et al., 2021].
This category also features Graph Neural Networks
(GNNs), such as Graph Convolutional Networks (GCNs)
[Rongzhou et al., 2020], [Dai et al., 2020] and Graph
Attention Networks (GATs) [Huang et al., 2021], [Chu
et al., 2023].

All the presented models successfully identify complex
patterns and relationships within traffic data, demonstrating
their effectiveness for traffic congestion prediction. However,
their heavy dependence on large datasets for training has
led to a predominant reliance on historical data. A major
challenge with these models is their difficulty in adapting
to the highly dynamic nature of traffic when dealing with
real-time data. Incorporating real-time data significantly
increases complexity, requiring careful consideration of rapid
road condition fluctuations. To address this, we investigate
the use of online learning methods, which are particularly
well-suited for real-time applications due to their ability to
update models continuously as new data becomes available.
Online learning allows adaptive and rapid predictions,
making it highly relevant for traffic congestion forecasting.
Various approaches exist within this paradigm, including
Stochastic Gradient Descent (SGD), Adaptive Gradient
Descent (ADAGRAD), Online Passive-Aggressive (PA), Root
Mean Square Propagation (RMSprop), and AdaDelta. These
techniques have been applied across different domains. For
instance, Khan et al. [Khan et al., 2022] developed a machine
learning-based stochastic gradient descent approach to
optimize medical record management and daily transactions
in e-Healthcare applications. Similarly, Vijayalakshmi et
al. [Vijayalakshmi et al., 2022] tackled the integration of
renewable energy sources (RES) in smart grids, employing
Artificial Neural Networks (ANN) and SGD to predict

air conditioner energy capacity, thereby facilitating Virtual
Energy Storage System (VESS) implementation. Additionally,
Muhammad and Anjani [Muhammad and Anjani, 2023]
leveraged both SGD and Adam optimization for stock price
prediction, successfully forecasting next-day stock values.
Nabipour et al. [Nabipour et al., 2020] explored stock market
prediction, using ADAGRAD. Their research focused on
the prediction of stock market values in different sectors,
including petroleum and non-metallic minerals.

Given the success of online learning in real-time adaptation
across various fields, we apply these methods to traffic con-
gestion prediction. Specifically, we used ADAptive GRAdient
Descent to predict traffic congestion in Muscat, Oman. The
flexibility of ADAGRAD aligns well with the real-time nature
of traffic patterns, enabling continuous updates and improving
system responsiveness to sudden fluctuations. In the next
section, we present our approach in details.

III. TRAFFIC CONGESTION MANAGEMENT

We developed an infrastructure-based approach designed to
address the challenge of real-time traffic data. This approach
accounts for various prediction horizons and dynamically
adapts predictions based on the real-time traffic conditions
within the studied area. For this purpose, we used intelligent
Variable Message Signs (VMSs), which, unlike traditional
Variable Message Signs, possess the capability to collect
data from multiple sources, conduct traffic analysis, estimate
current traffic conditions, and predict future traffic values.
Each VMS is strategically placed at a specific road segment
within the network. These VMSs collaborate by exchanging
information throughout the network to estimate and predict
traffic conditions effectively.

A. Traffic estimation

Each VMS collects real-time data from Google Maps API,
in order to calculate traffic features. These features help to
estimate the real status of traffic in the studied road and are
used later for the prediction of the future traffic values.

o Real-time data from Google Maps API
To acquire real-time traffic data, we used Google Maps
API, specifically the Directions API and the Distance
Matrix API!. These APIs provide essential metrics, in-
cluding Travel Distance (TD) and Travel Time (TT), for
a set of origin-destination pairs. By leveraging this data,
we extracted detailed traffic information for the selected
road segments between predefined start and end points.
This data is then used for traffic estimation on the road
network and serves as the basis for feature calculations,
which we elaborate on in the following section.

o Features calculation
Google Maps API provides two types of travel time
estimates between two points: the estimated travel time,
representing typical duration under free-flow conditions,

Thttps://developers.google.com/maps



and the actual travel time, reflecting real-time duration
based on current traffic conditions.

Knowing the actual real Travel Time value, we can
calculate the average speed and compare it with the
maximum allowed speed in the same road. This is how
our features are generated.

Equation 1 illustrates the calculation of our features.

TD; ; 1
F; . = — 100 1
I [( TTZ'J ) Vmaxi,j} 8 ()
Where:

F; ; is the feature from point i to point j.

TD; ; is the Travel Distance between the two points i
and j.

TT; ; is the actual real Travel Time from point i to point
j-

Vinax; ; 18 the maximum permissible speed in the road
from point i to point j.

Following the classification proposed by [He et al.,
2016], the feature value ranges from 0 to 100. Values
below 25 indicate heavy congestion, those between 25
and 50 suggest mild congestion, and values above 50
correspond to smooth or very smooth traffic conditions.

All the VMSs of our network work simultaneously. Each
road sign generates three distinct features taken at dif-
ferent timestamps. Based on the time windows between
these times, we determine our prediction horizons. We
describe this principle in details in the next section.

B. Traffic congestion prediction

In our study, predictions are made after the generation of
three features across time, collected from all the working
VMSs in our studied network. In the following, we define the
principle of prediction horizons and describe its calculation
process.

o Prediction Horizons calculation
let F; represent the feature generated at time ¢;, where
7 varies from 1 to n, and n is the number of features.
The time window for generating the next feature Fj; is
determined by the value of Fj:

1 minute if 0 < F; < 25,
tiv1 =t; + ¢ b minutes if 25 < F; <50, (2)
10 minutes if F; > 50.

This process of features’ generation continues, giving
subsequent features based on the previous ones. Predic-
tions are made after every set of three features for a
single VMS. The prediction horizon for each set, H Z,
is calculated by summing the time windows of the three
features:

3
HZ, =Y Aty 3)

i=1

Where, k represents the index of the feature set, and
Aty ; is determined by the value of the feature at time
t; according to the specified traffic conditions.

Real-time traffic prediction using ADAGRAD

We start by importing the essential libraries: torch,
torch.nn.functional, torch geometric.data, pandas,
numpy, and xlIsxwriter. We define the number of features
per VMS and the number of output predictions. We
use three features per VMS and one output prediction.
The process iterates over time to generate all required
predictions for the selected time period. The subsequent
step is the generation of features for each VMS,
which are then converted into PyTorch tensors. These
tensors are compiled into a data instance object that
includes all the data from the active VMS within the
network. For the ADAGRAD implementation, we define
the OnlineADAGRAD class, which contains the fit
and predict methods for the training and prediction
processes. The system’s effectiveness depends on the
chosen learning rate, the number of epochs, and the
adaptive nature of the ADAGRAD optimizer. After
experimenting with different settings, we determined
that a learning rate of 0.01 and 2000 epochs provided
optimal results. The ADAGRAD optimizer adapts the
learning rate for each parameter individually, allowing
the model to manage varying feature scales effectively.
During the prediction phase, the trained model applies
the learned weights to forecast traffic congestion values,
which are then scaled and outputted.

Data: Real-Time Data from External Source
Result: Traffic Prediction Values
Initialization;

Define the number of features (num_features);

Define the number of output predictions
(num_Predictions);

Generate features for each VMS:

X <+ generate_features();

Create a Data instance object from features:
data < Data(z = X,y =Y);

Initialize the Online ADAGRAD model:
model <~ OnlineADAGRAD(learning_rate =
0.01, num_epochs = 2000);

Train the model:

model.fit(data.x, data.y);

Test the model:
predictions <— model.predict(data.z);

for i in range(len(predictions)) do
Print prediction:

print(predictions[i] x 100);
end

Algorithm 1: Online ADAGRAD for Traffic Congestion

Prediction



IV. CASE STUDY: MUSCAT, OMAN

We studied traffic in the roads presented in Figure 1, mainly
Al Khoudh Street, Al Mazoon Street, and al Shabab Street.
These streets are major arterial roads in Muscat, Oman, con-
necting local roads with highways. They serve both residential
and commercial areas and experience heavy traffic during peak
hours. Al Khoudh Street connects key zones like schools,
universities, and shopping centers, contributing to high traffic
volumes. Al Mazoon Street primarily serves residential areas
with fluctuating congestion, while Al Shabab Street provides
access to commercial zones and faces substantial traffic.

We studied specific sections of these roads, as shown in Fig-
ure 1, considering seven roundabouts. VMSs were deployed
between them, with red arrows indicating traffic flow.

@ VMS i

©  Roundabout
—> Studied direction

Fig. 1. Studied network in Muscat, Oman

Table I provides the coordinates of the origin and destina-
tion.

TABLE I
COORDINATES OF VARIABLE MESSAGE SIGNS

VMS Origin Coordinates Destination Coordinates
VMS 1 | 23.618543, 58.180507 23.632900, 58.190293
VMS 2 | 23.632900, 58.190293 23.642356, 58.196889
VMS 3 | 23.642356, 58.196889 23.639201, 58.202899
VMS 4 | 23.639201, 58.202899 23.629523, 58.209609
VMS 5 | 23.629523, 58.209609 23.615853, 58.214165
VMS 6 | 23.615853, 58.214165 23.616766, 58.195247
VMS 7 | 23.616766, 58.195247 23.618543, 58.180507

The study focuses on the peak hours from 09:00 to 11:00
AM on 08/11/2023. Real-time data recorded during this period

serves as input, while the system outputs traffic predictions for
the seven VMSs.

V. RESULTS AND DISCUSSION

This section presents the results of our model. Figures 2 to
8 illustrate the traffic prediction values produced by the seven
road signs deployed within our network. The blue curves
represent the prediction values generated by our model, while
the red curves represent the actual traffic conditions on the
roads.
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If we take a look at the predicted traffic values of VMS 1
(Figure 2) at different times, we can see that the prediction
at 09:00 shows a small gap from the actual value, when
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compared to the other points in the graph. Subsequent
predictions get closer to reality by the time. Notably, the
10:00 and 10:30 predictions are very accurate, aligning
closely with the real traffic.

Examining Figure 3, a noteworthy observation is the
significant difference in the number of predictions between
VMS 1 and other VMSs, like VMS 4 and VMS 6. The
Variable Message Sign 2 generates 19 prediction values in a
two-hour period. The short prediction horizons for this VMS
indicate severe congestion on the studied road. Initial traffic
values range from 10.636 to 14.489, escalating to 41.739,
which is considered as a mild congestion, before returning to
lower traffic values.

The curves in Figure 3 illustrate how the predictions mirror
the traffic fluctuations. However, some notable deviations
occur: the first one at 9:21, where our model predicts a value
of 31.25, while the actual traffic value is 41.739, and the
second one at 10:36 where the predicted value is 25.32 while
the real traffic value is 11.013.

This is explained by the sudden traffic change from within a
short time. However, immediately after these deviations, the
system was able to correct itself and generate results very
close to the real traffic values.

Figure 4, 6, 7 and 8 illustrate the outcomes associated

with VMS 3, 5, 6, and 7, respectively. The prediction and
real traffic value curves almost overlap in these three figures,
indicating good model performance for these VMSs.

Figure 5 shows the predicted and real traffic values for
VMS 4, with the closest match occurring at 10:00. Slight
underestimations are observed at 09:00 and 10:30, while the
prediction at 11:00 slightly overestimates the real value. The
model performed well for this message sign but could be
improved to reduce deviations at certain timestamps.

Overall, our model reached accurate results in traffic pre-
diction, with the predicted values closely aligning with real
traffic patterns. However, challenges arise when traffic behaves
unpredictably, showing sudden spikes or drops. In such cases,
the model does not always capture these abrupt changes. How-
ever, we observe that after these sudden variations, the system
adapts, corrects itself, and produces accurate predictions for
subsequent time steps.

VI. CONCLUSION

In this paper, we explored the application of online learning
techniques for traffic congestion prediction, employing ADAp-
tive GRAdient Descent. We used intelligent Variable Message
Signs that collaboratively monitored traffic conditions across
a roads network in Muscat, Oman. Real-time data, sourced
from the Google Maps API, were processed to extract relevant
features for prediction.

By leveraging real-time data, our model provides timely
insights, enabling dynamic route adjustments and facilitating
data-driven decision-making. The system was evaluated using
seven Variable Message Signs, each generating predictions
across different prediction horizons. The results, compared
with actual traffic data, demonstrated the model’s effectiveness
in accurately predicting traffic congestion. Furthermore, the
model exhibited strong adaptability to continuously evolving
traffic patterns.

As a future direction, we aim to enhance the system’s perfor-
mance by integrating additional data sources, such as weather
conditions or incident reports. Additionally, combining ADA-
GRAD with other methods may be a promising approach to
improving the model’s ability to detect and adapt to sudden
variations.
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