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Abstract— The increasing complexity of global supply chains,
combined with the need for fast, cost-effective, and environ-
mentally friendly deliveries, has reinforced the importance of
multimodal freight transportation(MFT) as a key solution to
meet modern demands. One of the main challenges in MFT
is to develop an innovative optimization model to plan and
manage the supply chain. In this work, we consider four
modes of transportation (air, road, rail, and sea) and propose
an innovative multi-objective optimization model, designed to
simultaneously minimize transportation costs, transit times,
and CO;, emissions, while integrating the complex operational
constraints inherent in current logistic systems. To address
this problem, we adopt two well-known algorithms : Non-
Dominated Sorting Genetic Algorithm III (NSGA-III) and
Teaching-Learning Optimization (TLBO), through an experi-
mental study demonstrating the effectiveness of these evolutio-
nary solution methods in solving these complex optimization
problem.

The results show that TLBO optimization effectively reduces
costs and environmental impact, while the NSGAIII algorithm
improves delivery times.

Index Terms—multimodal transport, optimization, multi-

objective optimization, metaheuristics...

I. INTRODUCTION

Global economic development and advances in informa-
tion technology have profoundly simplified and accelerated
global communications.

Growing transport market demand can no longer be met by
a single mode of transport. MFT optimization, which could
be a classical continuation of logistics problems, involves
the efficient integration of multiple modes of transport and
multiple factors such as time, service reliability, cost and
CO; emissions to improve the overall efficiency of the
transport system by adapting to changing conditions (delays,
congestion...) and satisfying customer needs [1]. The resear-
chers evaluated various algorithms and models to mitigate the
complexity of multimodal transport networks and improve
decision-making.

Selecting the most reliable stochastic routes requires
the development of flexible, real-time, single-objective and
multi-objective approaches based on technology and data
analysis.

In the current literature, numerous optimization models
have been developed, based on single or multiple objective

"Mokhtar LAABIDI Université de Tunis, Institut Superéieur de Gestion
de Tunis, SMART LAB, 41 avenue de la liberté 2000 Le bardo, Tunis.
labidimokhtar27@gmail.com

’Lilia Rejeb Université de Tunis, Institut Superéieur de Gestion de
Tunis, SMART LAB, 41 avenue de la liberté 2000 Le bardo, Tunis.
lilia.rejeb@isg.rnu.tn

3Lamjed Bensaid Université de Tunis, Institut Superéieur de Gestion
de Tunis, SMART LAB, 41 avenue de la liberté 2000 Le bardo, Tunis.
Lamjed.bensaid@isg.rnu.tn

functions, within a deterministic framework [2]. However, in
reality, the expectations of customers and transport compa-
nies, as well as the operational constraints linked to delivery
contexts, are very diverse. Some customers prioritize lower
shipping costs, while others are willing to pay more for
shorter delivery times [3]. On the other hand, some customers
may seek a balance between cost and speed, trying to mini-
mize expenditure and transit times simultaneously. This di-
versity of needs highlights the fact that route optimization in
multimodal transport cannot be treated as a single-objective
problem, but rather requires a multi-objective approach [4].

The multi-objective model is widely regarded as a realistic
and relevant representation of optimization problems, as it ef-
fectively captures the complexity of real-life scenarios, where
multiple, often conflicting, objectives need to be optimized
simultaneously. Existing work on MFT optimization is often
limited to two objectives (cost and time) and three transport
modes. For a more global approach, we propose a model
integrating three objectives (cost, time, and CO, emissions)
while considering four modes of transport. This enables a
more realistic and sustainable optimization of supply chains.
This work propose to use TLBO and NSGAIIIL The results
show that TLBO effectively optimizes cost reduction and
environmental impact. In contrast, the NSGAIII stands out
for its ability to reduce delivery times.

II. STATE OF THE ART

The optimization of MFT relies on the combination of
different transport modes to ensure the efficiency and profita-
bility of logistics operations. This section is divided into two
parts : the first provides an overview of the main transport
modes, while the second is dedicated to a review of existing
work in this field.

A. Transport modes

— Road mode : Road freight is flexible and accessible,
ideal for short-distance door-to-door deliveries, but its
emissions, reliance on fossil fuels and urban conges-
tion require sustainable solutions [5].

— Air mode : Air freight ensures rapid deliveries of
valuable or perishable goods, efficiently connecting
remote locations, but it is expensive, vulnerable to
weather and regulations, and polluting due to its high
emissions [6].

— Rail mode : Rail freight, being both cost-effective
and environmentally friendly, enables efficient long-
distance transportation of goods. However, due to the
inflexibility of its routes, it typically requires transship-
ment to trucks to reach the final destination. [7].



— Maritime mode : Maritime transport offers an econo-
mical solution for transporting large volumes of freight
over long distances with relatively low CO, emissions.
However, its slow speed and associated risks, such as
sulfur emissions, require the use of cleaner fuels and
optimized routing strategies [8].

B. Multi-model transport optimization approaches

In multi-modal transport optimization approches, the har-
monious integration of different modes of transport is central
to leveraging their strengths without their weaknesses. By
integrating air, road, rail, and sea transport, this approach en-
ables route optimization, reduces costs, shortens lead times,
and minimizes environmental footprints. It thus contributes
to making supply chains more efficient and sustainable.
Nevertheless, most previous studies focus on two or three
transport modes due to the increased complexity of models
when integrating multiple modes.

Sun et al. (2018) [9] have solved the problem of green
multimodal routes, taking into account rail mode capa-
city constraints and road mode congestion, using a time-
dependent fuzzy programming method.

Wang et al. (2020) [10] used the Ant Colony Optimization
(ACO) algorithm to develop an efficient system for mini-
mizing CO, emissions and limiting risks. The application
of ACO enables the intelligent study of different route
combinations, offering equilibrium solutions that take into
account both safety requirements and environmental issue.

Archetti et al. (2022) [2] carried out an in-depth study
of complex strategic, tactical and operational problems,
demonstrating that existing studies are limited to using a
maximum of three modes of transport : road, rail, and sea.

Lu et al. (2022) [11] found an optimal solutions for
optimizing multiple objectives related to freight volumes,
costs, delays, and carbon emissions, using the NSGA-III
algorithm.

Peng et al. (2023) [12] explored the advances of a data-
driven multi-objective simulation algorithm (DDMSAC) to
search for efficient results for minimizing transport costs and
delays in three different transport modes : road (freeway), rail
(railroad), and sea (inland waterway).

GUO et al. (2023) [13] minimized cost and CO, emis-
sions. They used a mixed nonlinear programming model
based on particle swarm optimization (PSO).

Rejeb et al. (2023) [14] covered the four major modes of
transport (air, road, rail, and maritime). They aim to minimize
three different objectives : the overall cost of transport,
delivery time, and CO, emissions. To solve this complicated
problem, they employed two well-known metaheuristics :
the tabu search(TS) and the genetic algorithm(GA). These
methods enabled the problem’s multi-objectivity to be dealt
with successfully and to suggest equilibrium solutions that
served the economic, time, and environmental aspects. This
study represents a significant breakthrough, as it introduces
an innovative approach that simultaneously incorporates all
four major transport modes. The overall objective is to

develop a multi-objective model for multimodal freight trans-
port (MFT) that effectively manages the trade-offs between
transportation costs, delivery time, and CO, emissions.

Brar et al. (2024) [15] applied the TLBO algorithm to
solve complex challenges in multimodal transport systems
(MTS), focusing on minimizing total costs as the main
objective. This approach integrates the four transport modes :
rail, road, air, and sea.

Haghgoei et al. (2024) [16] introduced a multi-objective
optimization approach using NSGA-II and Non-Revisiting
Genetic Algorithm (NRGA) algorithms to address truck
operations planning in cross-docks under uncertainty and
fuzzy logistics. The study focuses on three objectives :
minimizing the maximum product reception time, reducing
gas emission costs, and decreasing the number of trucks
assigned to entry and exit gates. This method enhances the
efficiency and sustainability of cross-docking operations by
integrating environmental and operational constraints.

Derpich et al. (2024) [17] proposed an innovative approach
based on centralized load concentration, particularly suited to
regions with specific geographical constraints. The objective
is to reduce CO, emissions, optimize operational efficiency,
and decrease high logistics costs, while aligning with sus-
tainable development goals through the use of a genetic
algorithm.

Zhao et al. (2024) [18] used the NSGA-III algorithm to
develop a new multi-objective optimization approach for road
transport. This method simultaneously addresses the three
essential components of logistics performance : transport
time, operating costs, and environmental impact. Unlike
traditional approaches which often reduce these conflicting
objectives to a single-objective problem, the NSGA-III algo-
rithm preserves the multi-objective nature of the problem
and generates a Pareto optimal set of solutions. Using a
selection mechanism based on reference points, the algorithm
ensures both convergence towards high-quality solutions and
diversity reflecting the many trade-offs between objectives.
Results show that this approach is capable of identifying
reasonable and balanced operational configurations.

Zhang et al. (2024) [19] covered the four main modes
of transport (air, road, rail, and sea) and used the Sparrow
Search Algorithm (SSA) to limit CO, emissions.

MFT optimization seeks to efficiently combine different
modes of transport to improve logistics performance while
meeting environmental and economic challenges. Recent
research proposed a variety of algorithmic approaches (ANT
Colonies, NSGA-II, NSGA-III, PSO, TLBO, SSA, etc.) to
minimize costs, lead times, CO, emissions, and risks, while
managing uncertainties (capacity, congestion, and freight
volumes). These studies were limited to two or three modes
due to the complexity involved. Generally, recent research
has developed a single or bi-objective model linked to one
or two transport modes, but it is rare to find research that has
proposed a multi-objective model applied to several transport
modes.



ITII. OVERVIEW OF THE MULTIMODAL FREIGHT
TRANSPORT (MFT)

We adopt the same mathematical model used by Rejeb
et al. [14], but with more advanced optimization models
such as the NSGA-III and TLBO algorithms, for the reasons
mentioned above, instead of traditional algorithms such as
tabu search (TS) and genetic algorithms (GA). Rejeb et al.
[14] used a hybrid approach and a scalarization technique to
formulate the multi-objective problem into a single-objective
problem.

The implementation of the NSGA-III and TLBO algo-
rithms poses several challenges : data quality and availability,
the complexity of multimodal networks, and the variability
of operational conditions. Our simulation, developed in this
study, is highly feasible because it takes into account assump-
tions similar to real-world logistics conditions and realistic
data. We have integrated these assumptions into our model
to ensure a clear and efficient approach :

— The delivery method is set deterministically, which
ensures that neither the delivery time nor the associated
costs will be affected by unforeseen or random events.

— The amount of goods transported is limited by the
capacity of the containers. Although the volume can
be split according to needs, the model does not take
into account the optimization of the arrangement of
goods inside the containers.

— The model focuses on major road infrastructure and
excludes the first and last miles, i.e., journeys connec-
ting final shipping and receiving points, such as travel
between warehouses and customers.

— Each pair of ports is served by a single intermediate
mode of transport. Specifically, it is not possible to
provide a direct journey by ship, train, or truck bet-
ween two airports located in different cities, even if a
direct flight is possible.

A. Objectives

1) The primary objective is to reduce the total cost of
transportation, which encompasses trip expenses, tax
costs, and warehouse costs.

2) The second objective focuses on reducing the overall
travel time from the starting port to the destination
port.

3) The third objective is to reduce the total CO, emis-
sions, which includes minimizing both the emissions
generated during transportation along the routes and
those produced during transshipment at intermediate
nodes.

B. Constraints

— The shipping process requires each good to be trans-
ported from its origin to an intermediate node before
reaching its final destination, with the origin and des-
tination nodes prohibited from serving as intermediate
points to prevent circular routing.

— Transshipment operations are restricted to intermediate
nodes only, where ship-in and ship-out times must be
synchronized to ensure seamless transfers.

— Each good can undergo at most one transfer (either
into or out of a port) to maintain efficiency.

— Ship-out times must logically follow ship-in times at
transition ports.

— For goods originating from a port, ship-out times must
occur after the order date.

— Container capacities on all routes must exceed or
match the total volume of goods transported.

— Road usage is explicitly decided to ensure active or
inactive flow status.

— Deliveries must adhere to specified deadlines and
transit time limits.

— No transshipping is allowed at origin or destination
nodes.

— Only a single transport mode is permitted between any
two nodes to streamline operations.

IV. THE SOLVING METHOD

To address the MFT problem, we employ two advanced
optimization algorithms : TLBO and NSGA-III. TLBO algo-
rithm introduced by Rao et al. [24], in 2011. It is a simple yet
efficient global optimization method inspired by educational
teaching-learning processes, requiring only general parame-
ters like population size and iteration count. It also requires
no parameters to be optimized, no crossover operators and no
mutation. It offers a good balance between exploration and
exploitation in the logistics system, minimizing any risk of
unexpected convergence. In contrast to genetic algorithms
[22], it has proved effective in solving complex problems
such as neural network planning and optimization.

NSGA-III [25] excels in multi-objective optimization, par-
ticularly for more than two objectives, using reference points
to ensure diverse and well-distributed solutions. Its robust
exploration of Pareto frontiers makes it ideal for balancing
MFT objectives like cost, time, and CO, emissions.

In the following sections, we detail the key steps of each
method, highlighting their specific application to the context
of MFT.

A. TLBO Algorithm

TLBO relies on the natural diversity of the population and
the progressive improvement of solutions to deliver efficient
and optimal results.

Algorithm 1 TLBO implements a classroom-inspired op-
timization process with two phases : Teacher Phase and
Learner Phase.

— Initialization : Generates N candidate solutions P =
{S1,...,Sy} representing multimodal routes through
nodes {nj,...,ny} of V and edges {ej,...,en} of
E. Computes objective ranges ([Cmin,Cmax] for cost,
[Tinin, Tmax) for time, [Emin, Emax] for CO, emissions)
and selects the initial best solution S* via :

S* = argmin form () (D
SepP



— Normalization :
1/ C—Cpin
from(9)= 3 (e
T — Thin E — Enin )
Tmax — Tmin Emax — Emin
— Teacher Phase : Each individual S; in the population
learns from the best individual S* (the teacher) :

Si=S8i+rx(S*—TFxM) 3)

2

where r € [0,1] is a random value, TF € {1,2} is the
Teaching Factor, and M is the population mean.

— Learner Phase : Each individual interacts with a
randomly selected peer S;. If S; is better, it moves
away ; otherwise, it moves toward S; :

S; _ Si—f—rx (Si _Sj) if fnorm'(Si) < fnorm(Sj) (4)
(S;—S;) otherwise
The algorithm iteratively updates reference ranges and S*
until convergence (when fe < FE), then returns the optimal
solution with its normalized performance metrics.

Algorithm 1 TLBO for Multimodal Optimization
Require: Transport network G = (V, E), population size N,
max evaluations FE
Ensure: Optimal solution S* with objectives : cost, time and
CO; emissions (C,T,E)
1: Initialize population P = {S}, ...,Sy } with random routes
2: Compute objective ranges  [Cuin,Cnax]s  [Tnins Tnax)»
[Emin ; Emax]
3: §* < best normalized solution in P
4: while evaluation count fe < FE do
Teacher Phase
5 for each S; € P do
6: St Si+r(S*—TF-M)>rel0,1], TF € {1,2}
7. if fnorm(Sg) < fnorm(Si) then
8:
9

S; S;
: end if
10: end for
Learner Phase
11: for each S; € P do

12: Select random S; # S;

13: if fhorm (Si) < fhorm (Sj) then
14: S;%SiJrr(S,‘*Sj)

15: else

16: Sé(—S,--l—r(Sj—S,-)

17: end if

18: if fhorm (S:) < faorm (S,‘) then
19: NR S;

20: end if

21: end for

22: Update S* and objective ranges

23: end while
24: return S*

B. NSGA-III algorithm

NSGA-III relies on the concept of Pareto dominance to
identify the best solutions. To better explore all possibilities,
it uses a selection method based on reference points. This
helps to find a set of diverse and high-quality solutions.

Algorithm 2 implements NSGA-III to solve a multi-
objective optimization problem in multimodal transport, mi-
nimizing three objectives : total cost (transport, storage,
and taxes), total transport time, and CO, emissions, while
respecting constraints such as deadlines and capacity limits.
Input parameters include a transport graph G = (V, E), where
nodes represent ports, airports, and warehouses, an initial
population N of random trajectories, a maximum number of
generations g, and a mutation probability mp. The process
begins by generating an initial population Py using the
generate-initial-population method and employs directional
reference points to guide the search toward diverse Pareto-
optimal solutions. At each generation Q,, the algorithm
evaluates objectives and constraints for each individual, clas-
sifies solutions into non-dominated Pareto fronts (Fy, Fa,...),
and applies genetic operators (crossover, mutation) to create
new generations R;. The optimization process employs a
single-point crossover for each parent pair, selects random
route segment point p. and swaps subsequences after p.
while maintaining path continuity. Path validation ensures
route feasibility and compliance with deadlines. After g
generations or convergence, the algorithm returns Pareto-
optimal solutions, providing trade-offs between objectives for
informed decision-making.

Algorithm 2 NSGA-III for Multimodal Transport
1: Inputs : Transport graph G = (V,E), origins O, desti-
nations D, population size N, generations g, mutation
probability mp

2: Initialization :

3: Generate population Fy of N random solutions

4: Initialize reference points

5: Evolution :

6: fori=1to g do

7: Evaluate objectives (cost, time, CO,) for all solutions
8: Perform non-dominated sorting Fy, F3, ...

9: Calculate crowding distance

10: Reproduction :

11: Select parents using binary tournament

12: Apply single-point crossover :

13: for each parent pair do

14: Choose random crossover point p,

15: Swap segments after p. to create offspring
16: end for

17: Apply mutation with probability mp

18: Environmental Selection :

19: Combine parents and offspring : R, = U Q;
20: Select new population P, using elitism

21: end for

22: Output : Pareto-optimal transport solutions




V. DATA DESCRIPTION

The dataset provided by Ken Huang on GitHub [26]
consists of two sheets : "Order Information" and "Route
Information." The first sheet describes eight types of goods
( honey, furniture, pharmaceutical drugs...), detailing their
characteristics such as order number, weight, volume, and
departure/arrival ports. The second sheet outlines 50 direct
routes between ports in Wuxi, Singapore, Malaysia, and
Shanghai, specifying transport modes, costs, durations, and
weekly schedules. Each good has a well-defined departure
and arrival point, with several possible routes and modes of
transport, from which it is possible to choose those that best
meet the optimization objectives. Cities have warehouses to
facilitate transits or consolidate goods. The dataset focuses
on optimizing transport costs and times but does not ac-
count for CO, emissions. This user-generated dataset offers
realistic logistics scenarios, tested on optimization models.
And because it doesn’t take into account historical records,
it doesn’t reflect real-time variability or disruptions. While
these data are useful in terms of simulation and method
comparison, they require reflexive, intelligent use and real
validation to confirm the robustness of the model.

A. Simulation parameters

The TLBO algorithm utilized 30 solutions and a maximum
of 2000 evaluations, ensuring a balance between optimization
efficiency and solution diversity. This setup allowed effective
exploration of multimodal transport routes while keeping
computation time reasonable. For NSGA-III, the parame-
ters were determined experimentally, incorporating specific
considerations for Pareto front management and solution
distribution. Each experiment prioritized optimizing either
cost, time, or CO, emissions, with the detailed parameters
presented in Table I.

TABLE I
PARAMETERS USED FOR NSGA-III.

Parameter Value
Population size 100

Number of generations 500
Crossover probability 0.9

Mutation probability 0.1

Crossover distribution index 20

Mutation distribution index 20

Reference points the number of objectives

These parameter values are chosen based on the specific
requirements of the multimodal transportation problem. The
crossover and mutation parameters are based on default
values in the multi-objective optimization literature, and
implicitly tuned based on problem complexity.

B. Comparison of results

Tables II to V show the results of two different freight
optimization approaches : TLBO and NSGA-III with two
pareto front solutions : solution (P1) and solution (P2).
Solutions (P1) and (P2) represent key trade-offs among cost,
emissions, and time, illustrating distinct points on the Pareto
front to facilitate analysis without excessive complexity.

TABLE II
OBJECTIVE FUNCTION VALUES FOR EACH ALGORITHM.

Indicator TLBO NSGAIII : P1 NSGAIII : P2

Total travel days 77 63 28

Total CO, emissions (kg) 7282.87 29457.67 64232.67

Total cost 194895.00 195175.00 267210.00
TABLE III

TLBO : COMPARATIVE RESULTS FOR EACH FREIGHT.

Freight Cost CO; (kg) Days Modes
Honey 3001.875 1419.60 18 Truck-Sea-Sea-Truck
Furniture 1081.875 872.00 9  Truck-Sea-Truck
Paper plates 1271.875 1272.00 11 Truck-Sea-Truck
Pharmaceutical drugs  81151.875 1.27 10 Truck-Sea-Truck
Cigarette 106331.875 238.00 17  Truck-Sea-Sea-Truck
Apple 1451.875 1590.00 10 Truck-Sea-Truck
Durian 351.875 1350.00 1 Truck
Furniture 251.875 540.00 1 Truck

TABLE IV

NSGAIII P1 : COMPARATIVE RESULTS FOR EACH FREIGHT.

Freight Cost CO; (kg) Days Modes
Honey 3056.25 1692.60 15 Truck-Sea-Sea-Truck-Truck
Furniture 1681.25 17772.00 5 Truck-Truck-Air-Truck
Paper plates 1026.25 3572.00 12 Truck-Truck-Sea-Truck
Pharmaceutical drugs  81581.25 15.07 4 Truck-Air-Truck
Cigarette 105906.25 353.00 10 Truck-Truck-Sea-Truck
Apple 1206.25  4465.00 10 Truck-Sea-Truck-Truck
Durian 276.25 1350.00 1 Truck
Furniture 441.25 232.00 6 Truck-Rail-Truck

TABLE V

NSGAIII P2 : COMPARATIVE RESULTS FOR EACH FREIGHT.

Freight Cost CO; (kg) Days Modes

Honey 4063.88 15825.60 4 Truck-Air-Truck
Furniture 2053.88 10072.00 4 Truck-Air-Truck
Paper plates 2363.88 15072.00 4 Truck-Air-Truck
Pharmaceutical drugs  82243.88 15.07 4 Truck-Air-Truck
Cigarette 107553.88  2518.00 4 Truck-Air-Truck
Apple 2543.88 18840.00 4 Truck-Air-Truck
Durian 838.88 1350.00 2 Truck

Furniture 738.88 540.00 2 Truck

Table II presents NSGA-III (P2) delivers a reduced total
time of 28 days, compared with 63 days (P2) and 77 days
(TLBO), thanks to the extensive use of air transport (from
Table V). In terms of total CO, emissions, and according to
Table II, the NSGA-III algorithm presents a value (29457.67
kg for P1) and a high value of (64232.67 kg for P2) compared
to TLBO which gives a low value reaching 7282.87 kg,
thanks to the use of profitable and less polluting modes of
transport such as truck and sea(from Table III). In terms of
profitability, the TLBO has a low total cost of 194895 com-
pared with the very high total costs provided by the NSGA-
I (195175 (P1) and 267210 (P2)). TLBO is best suited to
reducing cost and environmental impact, but NSGA-III is



preferable for faster deliveries, as is the case for NSGA-III
(P2). The aim of these results is to help decision-makers
better select the algorithm that matches their operational
priorities. The results confirm the possibility of integrating
these approaches into other support systems to minimize time
and improve economic and environmental efficiency, adding
tangible value to logistics planning.

Figure 1 presents the transport routes for honey products
under TLBO and two NSGA-III solutions (P1 and P2).

TLBO : Singapore Warehouse < Truck Singapore Port <& sea Shanghai

Port 4@ sea. Wuxi Port & Truck Wuxi Warehouse.

ey

P1: Singapore (WH) @ Truck Singapore Port <&@ sea Malaysia Port <& Sea
Shanghai Port @ Truck Shanghai (WH) & Truck Wuxi (WH).

P2: Singapore Warehouse & Truck Singapore Airport *)- Air Wuxi Airport

@ Truck Wuxi Warehouse.
——uC

F1G. 1. Transport routes for honey products under TLBO and NSGA-III
(P1 and P2).

VI. CONCLUSION

Optimizing freight transport systems represents a major
challenge to meet the growing economic, environmental and
operational demands of a globalized world. Optimization
algorithms such as TLBO and NSGA-III offer promising
solutions to these complexities. This study has shown that
TLBO is particularly well suited to scenarios where cost
reduction and environmental impact mitigation are priorities.
NSGA-III, on the other hand, stands out for its ability to
ensure rapid delivery, but at high cost and CO, emissions.
These results underline the importance of selecting the
algorithm best suited to the specific objectives of a company
or logistics system. Prospects for this research include in-
depth evaluation of the performance of the proposed model
in real scenarios and exploration of new metaheuristic hybri-
dizations to improve these results. In the future, these hybrid
approaches could offer more balanced and versatile solutions
to the multiple requirements of modern freight transport.
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