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Abstract—For human mental and physical health, sleep is a
fundamental restorative process. Sleep analysis is considered as
a crucial task to identify the various abnormalities, given the
risks that sleep disorders can present. The gold standard for
human sleep analysis is sleep scoring. Sleep experts review the
PSG recordings and visually identify the various sleep stages
for each sleep epoch. Due to the massive volume of recordings
acquired during a single sleep period, manual sleep scoring task is
considered as a time-consuming and labor intensive task. In this
paper we propose a new approach for an interpretable automatic
sleep scoring model based on supervised deep learning method
and learning classifier system. The effectiveness of our approach
was investigated using real electroencephalography (EEG).

Index Terms—Deep learning, Learning classifier system, Con-
volutional neural network, sUpervised Classifier system, Explain-
able artificial intelligence.

I. INTRODUCTION

Sleep disorders are one of the most common health issues
that are often overlooked. At the same time, they affect
health and longevity as being sleep deprived causes cognitive
loss. Therefore, they have a negative impact on the essential
daily acts such as memory, concentration and moodiness [2].
This is why in research, sleep analysis has become a very
important field as well as analyses are considered to be
essential tasks for detecting the different anomalies. The best
way to analyze human sleep efficiency is by sleep scoring.
It consists of identifying the various stages of sleep. Based
on polysomnography (PSG) patient recordings obtained at
night during sleep.Sleep scoring is carried out manually by
experts by reviewing PSG recordings in order to identify
sleep stages. This research is always seen as exhausting
and time-consuming [1]. Polysomnography is a test to study
sleep and find out if or why the patient has experienced
sleep disorders. The PSG is a multivariate system consisting
of signal recordings such as electroencephalogram (EEG) to
monitor brain activities, electrooculography (EOG) to record
eye movement, electromyogram (EMG) for muscle activity
and electrocardiography (ECG) for heart rhythm monitoring.

II. R&K AND AASM SLEEP STANDARDS

The process of sleep scoring is based only on the standard
that has been accepted for about approximately 40 years is the
Rechtschaffen and Kales (R&K) manual sleep classification
(1968). According to R&K standards, sleep is composed in 6
stages (Wakefulness, Stage 1 NREM, Stage 2 NREM, Stage

3 NREM, Stage 4 NREM and rapid eye movement REM).
Despite this standard has been useful in many cases, R&K
rules have been criticized for their subjective interpretation,
which has led to considerable variability in the visual evalua-
tion of sleep stages [7] [9]. In 2007, the American Academy
of Sleep Medicine (AASM) proposed a new guide for the
classification of sleep stages by amending the standard guide
of Rechtschaffen and Kales. According to the AASM, they
combined the two phases of sleep S3 and S4 into a single
phase called deep sleep and also known as the Slow Waves
Sleep (SWS) stage because the characteristics of these 2 stages
are very similar [6]. Then the representation is becomes as
follows: W (wakefulness), stage N1, stage N2, stage N3, stage
REM.

III. AUTOMATIC SLEEP STAGES CLASSIFICATION PROCESS

According to the existing literature, the quantitative sleep
stage scoring scheme includes 3 common steps, including pre-
processing, feature extraction and classification. In addition,
in some papers, a feature selection step is added after feature
extraction in order to find a suitable feature subset. As shown
in 1. In order to strengthen the PSG signals the first step is to
eliminate artifacts if present to avoid the misinterpretation of
the data and the incorrect result. the second step consists in
extracting the appropriate input features from PSG signals.The
two primary methods widely studied and used for PSG signal
processing are Fast Fourier Transform (FFT) and Wavelet
Transform (WT) . Since it is easily applied to non-stationary
signals and provides richer information including amplitude,
frequency and time, WT is better for PSG processing. The
thid step is the classification which consists in classifying the
epochs according to their class.

IV. STATE OF THE ART

Performance indicators, such as classification accuracy,
nowadays govern computer-based analysis and classification of
physiological signals for applications in health care [15]. The
automatic sleep scoring has in recent decades monopolized the
interest of authors. Different methods of automatic sleep stage
classification usually extract features from the PSG signal
to analyze each time period (epoch) and use classification
algorithms to determine the sleep stage. For this reason, deep
learning represents a major step in understanding physiological
signals. Various methods of deep learning have been proposed
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Fig. 1. The process of automatic sleep stages classification
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for automatic sleep stages classification and most of them are
based on EEG signals since they are classified as the most
relevant signals.

Some researchers adopt the use of Convolutional Neural
Networks for the automatic sleep stages classification. Yildirim
et al. [2] proposed a convolutional neural network method to
classify sleep stages and used the EEG signal, EOG signal
and 1EEG & 1EOG signals as input to this approach. For
the EEG signal, they made a classification of 6 up to 2
classes and they obtained a success rate of 89.43%, 90.48%,
92.24%, 94.23% and 97.85% respectively. In addition they
achieved a success rate of 88.28%, 89.77%, 91.88%, 93.76%
and 98.06%, respectively for the EOG signal. For a single-
channel EEG+EOG they reached 89.54%, 90.98%, 92.33%,
94.34% and 98.06%, respectively. Tsinalis et al. [25] used
CNN to learn task-specific filters without using prior domain
knowledge based on EEG signal and they obtained 82% as
mean accuracy. SORS et al. [26] classified the EEG signal
into 5 classes, they developed a network with 14 layers.
This approach didn’t require a signal preprocessing or feature
extraction phase and reached 87% of accuracy. Supratak et
al. [27] proposed a DeepSleepNet. The proposed method
combined the convolutional neural network and long-short
term memory (LSTM) using EEG signal. Accuracy reached

86.2%. Z.Mousavi et al. [13] proposed an approach where
the idea is to apply the raw EEG signal directly to the deep
convolutional neural network, without involving extraction
or selection of features and the classification is made from
2 to 6 classes. The obtained classification accuracies were
respectively 98.10%, 96.86%, 93.11%, 92.95%, 93.55%.

Other studies used Recurrent neural Network (RNN) for
automatic sleep stages classifications. Hsu et al. [29] proposed
an RNN method based on EEG signal energy features to
classify different sleep stages. The accuracy rate of this
approach is 87.2%. Mousavi et al. [28] developed an approach
by combining convolutional neural network with long-short
term memory and sequence to sequence (RNN) technique.
They used EEG signal as input and they achieved 84.26%
of accuracy. In addition, Chen et al. [30] proposed a method
based on Hopfield Neural Network (RNN model) and reached
an accuracy of 80.6%. Tripathy et al. [31] used an approach
founded on auto-encoder for the automated classification of
sleep stages. They obtained an average accuracy of 85.51% for
’sleep vs wake’ classification, 95.71% for ’light sleep vs deep
sleep’ and last but not least 95.71% for 'rapid eye movement
(REM) vs non-rapid eye movement (NREM)’ sleep stages.
Based on EOG, Xia et al. [32] proposed a method using
Deep Belief Network (RBM model) and achieved 77.7% as
an average accuracy.

Though the different techniques mentioned before have
provided us with good classification results, they remain
uninterpretable due to a peculiar limitation related to the Deep
Learning algorithms. This limitation is caused by the Black
Box problem. Actually, it is one of the many challenges
existing in the Deep learning research activities today as the
optimum solution for meeting this challenge is to be able to
interpret enigmatic facts about Artificial Intelligence (What
we refer to as the Explainable AI). The classification phase
was the main focus of our work. Our goal is to make the
classification results that are made by the Convulutional Neural
Network interpretable through specific rules. To ensure this
task, we adopted a combination of CNN and the sUpervised
Classifier System. The CNN part of the combination is defined
by a neural network model that is mainly used for image clas-
sification problems and has shown high accuracy especially in
the sleep stages classification problems. The task is therefore
performed using polysomnography recordings.

V. PROPOSED APPROACH DEEPUCS

To ensure this task, we adopted a combination of CNN and
the sUpervisedClassifier System. The CNN part of the com-
bination is defined by a neural net-work model that is mainly
used for image classification problems and has shownhigh
accuracy especially in the sleep stages classification problems.
This approach contains two parts: A classification and a
knowledge extraction. As shown in figure 2, the classification
part consists first and foremost in building the model and
predicting each 30 seconds image state. Subsequently, we grab
the extracted features of each image as well as the result of
its related CNN class and use them as an input for the UCS



in order to extract rules which are essential to interpret the
classification. As a result, the final outcome is a knowledge
base of sleep stages for each 30s epoch and it includes :
images, its obtained features and its related extracted rules.
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Fig. 2. An overview of knowledge extraction from CNN classification.

VI. DETAILED ARCHITECTURE

We start exploring the figure 2 from top to bottom. For
the first part of the figure, we trained the model. Then, we
predict the class based on the input image. To extract features,
each signal is processed with the “Wavelet Transform”. A state
represents a 30 seconds signal of the image. Therefore, we
select the state in addition to its class obtained by the CNN
model and use them both as an input for the following second
part.

In the second part of the figure 2, we aim to extract rules that
allow us to recognize the main criteria for the classification
performed by the CNN model, deduct interpretations and
select those relevant to our project. Therefore, we use the
image state and its corresponding class as an input for the
UCS to retrieve knowledge related to the classification results.
The final output contains features, rules and the image itself.

1) CNN architecture :: The architecture that we have
chosen to apply that is , the CNN algorithm, defined by: (see
figure 3)

e 5 layers conv2d : To extract the feature map from the

image into a matrix.

e 3 layers maxpooling : That aim to choose the maximum
of features so as not to have any loss of information. It
serves also to reduce the complexity of the image.

« 1 dropout layer : That eliminates inactive neurons to avoid

the overfitting.
e 1 dense layer : That is the final layer and that allows
classification.
We used the RELU as the activation function to remove the

negative values in the convolutional layer.
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Fig. 3. Our CNN architecture

A. UCS architecture :

Figure 4 explains the flow of the ucs for knowledge ex-
traction. Let’s start with the source of data. Each row of the
source is made up of a set of features and a corresponding
class. The first step is to identifies the rules that respect the
conditions of the input to create the matchset without taking
into account the Action part. In case where no match between
the input and the rule base is found, the covering step comes in
to propose rules that correspond to our input. The next step is
to select the correct rules in terms of action and put them in the
correctset while putting the incorrect rules in the incorrectset.
Then, we apply the genetic algorithm on the correct rules
after a certain number of iteration that we have it fixed in
the parameter to create new adjusted rules using mutation and

crossover methods.
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VII. EXPERIMENTS AND RESULTS

This section presents detailed information on the sleep data
sets used in the study and also provides the results of the
classification as well as the extracted rules obtained.

A. Dataset description

We used data provided by the PhysioNet site in our ex-
perimentation. PhysioNet is an open access platform con-
taining biomedical signals from healthy subjects and patients
with different diseases, such as sudden cardiac death, heart



failure, epilepsy, sleep apnea, etc. The data set consists of
153 polysomnographic sleep recordings, including EEG, EOG,
chin EMG, some of them also include breathing and body
temperature signals. Each recording is accompanied by an
annotation file that covers the labels assigned according to
the AASM manual by specialists. Sleep stages W, N1, N2,
N3 and R, respectively, are represented in the file as 0, 1, 2,
3, 4.

During this project, we used 3 EEG signals as the initial
data set. These signals were later on divided into two separate
sets: A training set (80%) and a test set (20%).

The descriptions of the dataset is given in the table I where
W, N1, N2, N3, R and TNE correspond to the sleep stages
classes and the total number of epochs.

W NI N2 N3 R TNE
Training data | 2970 | 153 | 948 | 501 | 412 | 4984
Test data 742 38 237 | 125 | 103 | 1245

TABLE T
DESCRIPTION OF THE DATASET

B. Results and discussion

1) Evaluation metrics: In order to evaluate the obtained
results, we used some performance metrics: Percentage of
Correct Classification (PCC), Confusion matrix, Precision,
Recall and F1 measure.

e The PCC is the number of correct classifications divided

by the total number of epochs.
POC — Numbero fcorrectclassi fications

)

Totalnumberofepochs

o The precision; of a class; defines how is reliable the
model is when it gives us the resulting classification.

. TTP.u
P = 2
recicion TPy 1+ TFP, )

With TTP,ll is the Total number of True Positive and TFP;
is the Total number False Positive.

n
TTPur =Y ) 3)
j=1
n
TFP, = aji, with(j # i) )
j=1

e The recall; of a class; shows how well that class can be
detected by the model.
TT P,y

I = ——-tall 5
Recalli = o —TFN, )

With TFN; is the Total number of False Negative.

TFN; =Y a;, with(j # i) (6)
j=1
o The Fl-score; of a class; is given by the harmonic mean
of the Precision and the Recall which is presented by the
equation:

2 x Precision; X Recall;
F1— = — 7
seore Precision; + Recall; @

As it is a better metric when there are imbalanced classes,
as in our case, we decided to focus on the F1l-score as an
evaluation metric. Imbalanced data distribution exists in most
real-life classification problems and thus Fl-score is a better
metric to test our model.

2) Results and discussion: performance of our CNN model
is sensitive to the number of epoch’s parameters. We obtained
an accuracy of 92.7% after 14 iteration of training.

In table II, we note that the diagonal elements of the
confusion matrix represent the number of correct predictions.
The first class *Wake’, which stands for the majority class,
has 737 correct predictions out of 742 tests done. For the
’N1’ class, the result is not accurate. Our data is imbalanced
and N1’ represent a minority class within the data since it
contains a small number of epochs. For these mentioned facts,
the model does not take into consideration the "N1°class while
learning. We also note that the N2’ class has 214 out of 237
correct predictions while the "N3’ has 119 out of 125 correct
predictions. Finally, the class 'R’ was able to correctly predict
99 out of 103.

real classclassified as w N1 N2 N3 R
w 737 3 0 0 2
N1 10 6 4 1 17
N2 0 5 214 11 7
N3 1 0 119 1
R 0 1 3 0 99
TABLE 1T

CONFUSION MATRIX OF CNN CLASSIFICATION.

In order to evaluate our classification model, we focus on
the Fl-score metric. This metric is commonly used for the
evaluation of imbalanced datasets, such as in our case.

As seen in the table III, we explored multiple metrics that
gave good results related to the existing classes except for the
case of the “N1” class. After deciding that our target metric
for evaluation is the Fl-score for the accurate results that it
is known to ensure while dealing with imbalanced datasets,
we begin now to inspect the given results. The class “W” has
98.91%, meaning that the model in unlikely to misclassify
this class and has properly learned from it instead. We also
note that the results are relatively satisfying for the classes
“N2”, “N3” and “R” with respectively, 92.63%, 92.96% and
86.45%. Now to what concerns the class “N1”, the results
are unsatisfying. The Fl-score corresponding to this class is
22,63% which is way lower than the other mentioned results.
We can explain this by the fact that we had few images
associated with this class in the training phase.

To extract knowledge from the CNN classification, as we
have already mentioned we will based on the UCS, After
effectuating several experiments, we fixed our parameters as
following:

« Population size: 3500
« Exploration/exploitation rate: 0.5



ClassMetrics PCC Precision Recall F1-score

w 99.32% 98.52% 99.32% 98.91%

N1 15.7% 40% 15.78% 22.63%

N2 90.29% 95.11% 90.29% 92.63%

N3 95.2% 90.83% 95.2% 92.96%

R 96.11% 78.57% 96.11% 86.45%
ABLE TIT

ASSESSMENT OF EACH CLASS.

o Number of iterations: 100000
e Mutation probability: @ = 0.06
o Crossover probability: xy = 0.6
o Genetic algorithm: 054 = 50

Figure 5 is an example of a rule deducted by the
UCS for the class W. Starting from this feature
[0,0,0.692308,0.433333,0,0,0,0,0.72,0.373494], we  were

able to extract the following knowledge: When a new
state is received and each value in the feature belongs to
its corresponding interval, then the probability of being
associated with the class W is equal to the accuracy set by
the rule.

F1 F2 F3 F4 F5

[0.0,0.039306755
591742064]

[0.0,0.001941225
4650374217]

[0.59524657253 ,
0.78936942746]

[0.33927968702 ,
0.52738631297]

[0.0,0.094958198
66724656]

mp Class 0
t

Action

[0.64124644364,
0.79875355636]

[0.28275183988,
0.46423616011 ]

[0.0,0.016112476
00453608]

[0.0,0.021782395
889302565]

[0.0,0.045342530
828416466]

F6 77/ F8 F9 F10

Fig. 5. Example of rule for the class W

VIII. STATISTICAL ANALYSIS ON UCS RESULTS

During the knowledge extraction phase, we were able to ex-
tract 3294 rules out of 1245 CNN classifications. We decided
that rules reaching 50% threshold are considered as reliable
rules. Table IV illustrates the number of the reliable rules that
we have selected.

ClassRules | reliable rules
w 541
N1 3
N2 78
N3 43
R 24
TABLE TV

STATISTICAL RESULTS

The table IV shows us the distribution of the rules. As
it is demonstrated, the majority of the reliable rules belong
to the W class. This result was already expected since these
rules represent the majority of the UCS states with a 78.52%
(541 out of 689 rules). On the other side, the number of rules
representing the classes N1, N2, N3 and R are respectively 3,
78, 43, and 24. We are going to explore the result of the R
class. Even though the CNN classification for this class was

satisfying, we were not able to extract many reliable rules. This
fact is due to the inaccurate result of the CNN classification for
the class N1. The result related to N1 reduced the performance
of class R in the knowledge extraction part by giving it false
inputs. This means that the UCS took a lot of features from
N1 with class R as input.

IX. CONCLUSIONS

In this paper, we focused on the interpretability of our
Deep Learning model and for that specific reason we proposed
DeepUCS combination by using Convolutional Neural Net-
works as a deep learning method. Our target was to interpret
the classification results obtained by the CNN based on a set
of rules. Since brain activity presents the most important bio-
physiological variations that are relevant to the sleep analysis,
we used images from real electroencephalography signals
for the classification phase as an input. On the other hand,
knowledge extraction required features based on the existing
signals and the CNN classification as an input for the UCS.
Its main goal was to retrieve knowledge allowing us to get
the class from a new feature and adding an explanation on
how it was classified in the first place. Getting this knowledge
was done using our pre-defined rules that have been extracted
in a previous step. Finally, we obtained the knowledge re-
lated to the sleep stages classification which was inaccessible
before due to the Black Box problem caused by the deep
learning method that we have opted for. This project aimed
to extract knowledge by combining two techniques and it was
an attempt to apply the explainable Artificial Intelligence to
ensure interpretability of the model by knowledge retrieved.
This knowledge and interpretations were necessary in order to
reveal what will be later essential to improve the sleep analysis
which will result in suggesting the appropriate treatments. As a
future work, we aim to use a larger data set to solve the imbal-
anced characteristic of the classes obtained. It is very crucial
point since data set having skewed class proportions affect
our model’s performance. Therefore, the training data have
to represent all classes equally to retrieve more knowledge
and avoid struggling to class the new observations. In another
perspective, we plan to consider other PSG signals for sleep
scoring in addition to the electroencephalography signals that
were used in this project. Other PSG physiological signals are
available such as electromyography, electrooculography and
electrocardiography.
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