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Abstract— This paper introduces a novel information sharing
mechanism, the Improved Information Sharing Mechanism
(I2SM), an adaptive real-time framework designed to enhance
the performance of metaheuristic algorithms. I2SM dynami-
cally collects and evaluates critical metrics, such as improve-
ment rates and stagnation levels, through parallel processing,
enabling real-time actions such as hybridization and parameter
tuning. The mechanism’s adaptive nature ensures efficient
handling of diverse optimization challenges by dynamically
balancing exploration and exploitation, with a reasonable trade-
off in execution time.

To assess the performance of the proposed 12SM mechanism,
we selected the Particle Swarm Optimization (PSO) algorithm
as a representative test framework. Empirical results from vari-
ous benchmark functions demonstrate that PSO integrated with
I2SM achieves superior performance, outperforming standard
PSO in 90% of the cases. Although I12SM-PSO incurs a slightly
higher execution time compared to standard PSO, significant
improvements in solution quality validate its efficiency. How-
ever, this increase in execution time highlights a limitation that
should be addressed in future research to optimize computa-
tional efficiency while maintaining performance gains.

I. INTRODUCTION

Metaheuristic algorithms, although widely utilized for
solving complex optimization problems [1]-[4], have sev-
eral inherent limitations. These issues include premature
convergence [5]-[8], stagnation in local optima [9], [10],
and inefficient exploration and exploitation of search space
[6], [11]. A significant cause of these problems is the
lack of effective communication within the algorithm [12]—
[15]. Many metaheuristic algorithms do not fully utilize the
valuable information from individuals in previous iterations
to guide their current and future searches [16], [17].

For example, algorithms like Artificial Bee Colony (ABC)
and Ant Colony Optimization (ACO) discard previous in-
stances directly, while others, such as Cuckoo Search (CS)
and Particle Swarm Optimization (PSO), only make use of
the best previous individuals. To address these challenges,
researchers have explored various strategies, such as hy-
bridizing metaheuristics with other optimization techniques
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[71, [18], [19] or dynamically adjusting parameters [20] in
response to the algorithm’s performance. However, these
adjustments are often reactive rather than proactive, relying
on predefined rules or external interventions.

The literature is abundant with studies proposing various
information sharing mechanisms (ISM) to address the limita-
tions of optimization algorithms [12], [21], [22], [22]-[32].
These mechanisms aim to improve communication within
the algorithm, allowing better coordination among particles
or agents, and thereby improving overall performance [21],
[22], [22]-[33].

The proposed Improved Information Sharing Mecha-
nism (I2SM) builds on the foundational concept of the ISM
mechanism [33] by introducing an adaptive framework that
fully utilizes metaheuristic performance data throughout the
optimization process. Unlike conventional ISM approaches,
which can employ static or limited strategies [33], I12SM
dynamically evaluates key performance indicators (KPI) —
including the improvement rate (A), the convergence rate,
and the stagnation (S) — in each iteration. Based on these
metrics, the mechanism activates predefined triggers to im-
plement targeted adjustments or hybrid strategies, ensuring
a balance between exploration and exploitation.

To demonstrate its effectiveness, 2SM is integrated with
the PSO algorithm as a case study, incorporating specific
modifications to address challenges such as premature con-
vergence [5] and unbalanced exploration [6].

The integration of adaptive triggers, hybridization, and
parallelism enhances PSO’s efficiency and robustness while
offering a scalable framework for improving other meta-
heuristics. The PSO case study demonstrates the ability
of 12SM to overcome key limitations of traditional meta-
heuristics, such as poor information sharing and limited
adaptability.

The article begins with Section 2, which offers a detailed
analysis of existing mechanisms through three key perspec-
tives: information structure, information support, and infor-
mation state: information structure, information support, and
information state. Section 3 introduces the proposed 12SM
mechanism, detailing its anatomy and functional features.
Section 4 demonstrates a case study using the PSO algorithm,
particularly sensitive to insufficient information sharing.

II. LITERATURE REVIEW

Metaheuristic algorithms are widely recognized as power-
ful optimization tools, each defined by unique mechanisms
that guide selection, exploration, and exploitation strategies
[8], [34]. Among these mechanisms, the Information-Sharing



Mechanism (ISM) plays a pivotal role by coordinating and
facilitating communication between agents or particles dur-
ing the optimization process. ISM manages the exchange of
crucial information, including the best solutions discovered,
fitness evaluations, and directional updates, which are essen-
tial to drive research progress.

Over the past decade, substantial progress has been
achieved in developing metaheuristic algorithms that in-
tegrate innovative strategies to boost optimization perfor-
mance. For instance, the Improved Light Spectrum Opti-
mizer (ILSO) integrates novel update systems to improve
exploration and exploitation capabilities, achieving superior
parameter estimation for photovoltaic models [35]. Simi-
larly, Improved Binary Quadratic Interpolation Optimiza-
tion (BIQIO) incorporates crossover and swap operators to
improve search space exploration for 0-1 knapsack prob-
lems, demonstrating higher accuracy and computational ef-
ficiency compared to classical methods [?]. Furthermore,
the Improved Spider Wasp Optimizer (ISWO) combines
local search strategies with the Spider Wasp Optimizer,
improving parameter estimation in double-diode models and
excelling in both performance and convergence speed against
established methods [37].

These advancements align closely with the objectives
of the Improved Information-Sharing Mechanism (I2SM),
which dynamically adapts metaheuristic processes in real
time through metric-driven strategies, such as parameter
tuning and hybridization. Using adaptive methodologies,
I12SM improves both the efficiency and effectiveness of meta-
heuristic algorithms. To provide a structured understanding,
the ISM is analyzed in more detail in this section through
its three fundamental elements: Information Structure,
Information Carrier, and Information State.

A. Information Structure

The Information Structure element of the ISM mechanism
addresses the organization, classification, and sources of
information in metaheuristic algorithms. In the classical PSO
algorithm, the information structure defines how particle
data - such as position and velocity - are organized into
personal and global best information points, guiding the
swarm towards optimal solutions.

Table I provides a detailed summary of the information
structure strategies reviewed, highlighting their mechanisms
and respective contributions to the improvement of meta-
heuristic algorithms.

B. Information Support

Information support includes the tools and frameworks
essential for storing, managing, sharing, and disseminating
information within metaheuristic optimization algorithms.
This includes databases, information management systems,
communication protocols, and any other mechanism that
facilitates the management and transmission of information
within a system.

In the literature, two main categories have been identi-
fied: clustering and neighborhood-based approaches, and

TABLE I
SUMMARY OF INFORMATION STRUCTURES IN METAHEURISTIC

ALGORITHMS
Article Structure
[23], [41] Neighborhood and Direction Information

[24], [42], [12]
[25], [21], [26], [43]

Individual Information
Mutual Information

[40] Task-Based Information

[44] Neighborhood Information

[27] Population and Neighborhood Information
[45] Surrogate Information

[30], [29], [28], [39] | Neighborhood Information

[31], [22] Population Information
[20], [46] Population/Swarm Information
[47] Information From Dynamical Environments
[32] Neighborhood/Individual Information
TABLE II
INFORMATION SUPPORT CLASSES
Information Support | Papers
Class
Clustering and [44], [40], [43], [27], [22], [28],
neighborhood-based [39], [41], [32]
Memory and storage- | [25], [12], [46]
based

memory-based ISMs. Table II provides a detailed summary
of the information support classes reviewed.

Clustering and neighborhood-based approaches rely on
structural techniques to efficiently partition and organize the
search space. Clustering methods guide individuals towards
optimal solutions within their designated groups, improving
search efficiency and convergence speed. For example, some
approaches dynamically form groups where leaders share
information on global best solutions (gbest) while receiv-
ing updates on personal best solutions (pbest) from their
members. The neighborhood-based approach also includes
the use of ring topology, where the best solution in each
neighborhood is stored at each iteration to impact the next
search space solution [28]. Memory- and storage-based ISMs
extend the optimization potential by using dedicated storage
systems to improve adaptability and robustness.

C. State of Information

The state of the information represents the quality, com-
pleteness, and impact of the information shared within ISMs,
which significantly influences the efficiency and adaptability
of metaheuristic algorithms. The high quality of the infor-
mation indicates that the data are accurate and complete,
enabling optimal decisions to be made and parameters to
be adjusted. Conversely, a low information state signals
incomplete or noisy data, requiring refinement or additional
processes to improve algorithm performance.

Several studies focus on methods for dynamically con-
trolling and exploiting the information state. Evolutionary
state estimation (ESE) [42], for example, evaluates the av-
erage distances between particles to adaptively adjust the
PSO parameters, ensuring a balance between exploration
and exploitation. Metrics such as mean absolute velocity



(VAVG(t)) [20] are used to measure the energy of particle
motion, allowing real-time optimization of algorithmic be-
havior. Stagnation detection measurements are particularly
useful for identifying when particles become static, thus
avoiding premature convergence and maintaining swarm
search efficiency.

Despite significant advancements in ISM mechanisms,
several limitations remain. Many methods struggle to balance
exploration and exploitation, often relying on static informa-
tion structures or pre-defined neighborhood and clustering
frameworks, which can reduce adaptability in dynamic en-
vironments. In addition, memory and storage-based mecha-
nisms face scalability issues, particularly for large-scale or
high-dimensional problems. These challenges highlight the
need for more flexible and adaptive solutions.

The proposed 12SM mechanism addresses these limita-
tions by dynamically adjusting information sharing based
on evolving conditions. By integrating adaptive triggers,
hybridization techniques, and parallelism, I2SM improves
the efficiency, robustness, and scalability of metaheuristic
algorithms, offering a more versatile approach to overcome
the constraints of traditional ISM methods.

III. THE IMPROVED INFORMATION SHARING
MECHANISM (I2SM)

As discussed earlier, various approaches have been de-
veloped to enhance metaheuristic algorithms by leveraging
information sharing through various mechanisms. The pro-
posed Improved Information Sharing Mechanism (I12SM)
is notable for focusing specifically on the critical analy-
sis of information that drives optimization. By evaluating
these data and dynamically adjusting the performance of
the metaheuristics, I2SM aims to significantly improve the
optimization results. The mechanism is composed of three
core components, as depicted in Figure 1.

In this study, I2SM is integrated with the selected meta-
heuristic algorithm, allowing the parallel execution of two
interdependent processes during each iteration: the mera-
heuristic optimization process and the data collection and
analysis process. This parallelization is achieved through
multithreading.

During each iteration, the optimization process starts with
the metaheuristic algorithm that generates candidate solu-
tions. During the data collection and analysis process, key
metrics such as the improvement rate, the iterations of stag-
nation, and the convergence rate were used. These metrics
are continuously monitored and analyzed in an evaluation
phase powered by a multi-agent system (MAS).

The evaluation phase is critical for dynamically controlling
the performance of the metaheuristic. It comprises three key
activities:

« Data Collection: Gathering relevant performance met-

rics from the ongoing optimization process.

o Data Analysis: Assessing the metrics to determine the

state of the algorithm.

« Decision-Making: Activating specific triggers based on

the results of the evaluation to optimize the behavior of

the algorithm.

These triggers are designed to dynamically adjust the
search process, ensuring a balance between diversification
(exploration of new solution spaces) and intensification (ex-
ploitation of promising regions). The operational logic of
I2SM, including its triggers and tasks, is detailed in the
following sections and visually summarized in Figure 2.

In the study, the I2SM mechanism was designed specifi-
cally to address the challenges of multidimensional optimiza-
tion problems. Meanwhile, optimization problems in real-
world applications are inherently complex and often involve a
diverse spectrum of challenges that Zhanas [49] referred to as
5-M challenges: large-scale optimization, dynamic optimiza-
tion, multimodal optimization, multiobjective optimization,
and constrained and expensive optimization problems.

In fact, we recognize that dynamic environments, char-
acterized by varying objective functions and varying con-
straints, introduce additional levels of complexity. Currently,
the 12SM framework lacks adaptive mechanisms to detect
and respond to these environmental changes. This limitation
presents a compelling direction for future research, where
enhancing the triggering mechanism could allow I2SM to
seamlessly adapt to ever-changing research spaces.

Fig. 1. 12SM Data Analysis Components.

A. Performance Data Collection

At each iteration, comprehensive information is gathered
on various aspects of the metaheuristic’s performance. This
includes metrics such as:

o Improvement Rate KPI: This metric tracks how
quickly the algorithm finds better solutions over time.
A higher improvement rate means that the algorithm is
efficiently discovering better solutions.

o Convergence Rate KPI: The convergence rate evalu-
ates how steadily the algorithm approaches an optimal
or near-optimal solution. A consistent convergence rate
indicates stability and reliability.

o Stagnation KPI: This metric identifies iterations with
little to no improvement in solution quality, indicating
potential problems such as premature convergence or
lack of exploration.

B. Data Analysis: Triggers & Actions

The collected KPIs provide quantitative insights into the
metaheuristic’s overall performance, allowing us to assess its
effectiveness throughout the optimization process. By sys-
tematically collecting and analyzing these indicators against
predefined thresholds, we can track the evolution of the
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Fig. 2. 12SM Flowchart

metaheuristic across iterations. This approach enables us to
make appropriate adjustments and activate specific triggers
for necessary actions. A multi-agent system [50] is con-
sidered Information Support, with each action managed by
a dedicated agent responsible for a specific KPI and its
associated trigger, ensuring effective adjustments based on
KPI evaluations.

o Fine-tuning Parameters: Adjustments to algorithm
parameters are triggered when the convergence rate falls
below a specific threshold value, which is set as a
control parameter. If the convergence rate is slow, it
indicates that the algorithm’s parameters (mutation rate,
crossover rate, population size) need adjustment. Fine-
tuning these parameters can improve the results and
allow the algorithm to adapt to changing conditions,

improving search effectiveness.

o Incorporating Hybrid Approaches: Adjustments to
the algorithm are triggered when the performance anal-
ysis indicates slow convergence or stagnation, based on
predefined threshold values for the improvement rate
and the stagnation KPIs. Subsequently, hybridization is
employed by combining the metaheuristic with local
or global search techniques, or by applying problem-
specific heuristics.

Threshold-based triggers ensure that the metaheuristic al-

gorithm remains effective and adaptable, leading to improved
performance and more robust solutions.

C. Pseudo-code

1) Initialize Metaheuristic Parameters (e.g., population
size, maximum number of iterations max_iter,
threads, cl1, c2, thresholds.)

2) For each iteration i = 1 to max_iter

a) Run the Metaheuristic (PSO)
b) Check for stopping condition
c) If the stopping condition is met, exit the loop
d) Collect performance metrics:

« Stagnation iteration number (stagnation_iter)
o Improvement rate (improvement_rate)
« Convergence rate (cv_rate)

e) If stagnation_iter exceeds the threshold ’S’,
activate the Diversification Trigger.

f) If improvement_rate is less than the threshold
"A’, activate the Intensification Trigger.

g) If cv_rate is low, adjust the Metaheuristic param-
eters

h) Continue to the next iteration

IV. CASE STUDY: I2SM-PSO

To demonstrate the effectiveness of 12SM, PSO is selected
as a case study. This evaluation focuses on the Information
State, quantified through metrics such as Stagnation (S) and
Improvement Rate (A). These metrics enable the dynamic
activation of triggers by agents, initiating tailored enhance-
ment actions.

For example, when stagnation is detected, the system
employs hybridization with a random walk to boost diversi-
fication and explore new regions of the search space. Con-
versely, during cases of weak improvement, hybridization
with Hill Climbing is applied to intensify the search and
refine solutions.

A. Particle Swarm Optimization

PSO is a population-based metaheuristic. Unlike evo-
lutionary algorithms that use genetic operators, such as
crossover and mutation, standard PSO [51] emulates the
behavior of swarms in nature, such as insects, flocking
animals, birds in group flight, and schooling fish, which
collaboratively search for food. Each member of the swarm
adapts its search patterns by learning from its own experience
and that of other members. These phenomena have been
studied, and mathematical models have been constructed.



The classical PSO algorithm operates on the following two
equations:

”U,'j(t + 1) = Uj,j(t) +c1r1 (pbestij — Iij(t))

1
+ ¢ - 1o - (gbest; — xi;(1)) M

Tij (t + 1) = Xjj (t) + ’Uij(t + 1) 2)

where v;;(t + 1) is the updated velocity of the particle 4
in dimension j in iteration ¢+ 1; c¢; is the cognitive learning
factor, which controls the influence of the particle’s personal
best position (pbest) on its velocity update; 1 is a random
number in the range [0, 1], used to scale the influence of
pbest;pbest;; is the best position achieved by the particle ¢
in dimension j during its search history; x;;(¢)is the current
position of the particle ¢ in dimension j in iteration ¢; co is
the social learning factor, which determines the influence of
the best global solution of the swarm (gbest) on the update
of the velocity of the particle; ro is a random number in
the range [0, 1], used to scale the influence of gbest; and
gbest;:] is the best global position found by the entire swarm
in dimension j.

B. I2SM-PSO

As discussed in the previous section, the [2SM mechanism
employs a multi-agent system where each agent monitors
a specific metric. Based on collected KPIs and predefined
thresholds, triggers are executed on dedicated threads to
accelerate execution. For example, if the PSO encounters
stagnation, a trigger is activated to hybridize the process
with a random walk, diversifying the solutions, and enabling
a global search for better options. This process loops until
stagnation is resolved, and the output of the agent is fed back
into the PSO to continue the optimization.

Similarly, in cases involving improvement rates or a com-
bination of stagnation and improvement, specific triggers are
executed. For improvement rates, a hill climbing mechanism
is used to intensify the local search and exploit promising
regions. In scenarios combining stagnation and low improve-
ment rates, a dual trigger approach balances diversification
and exploitation. These mechanisms collectively improve the
state of the search, both locally and globally, ensuring adap-
tive and efficient optimization across dynamic and complex
landscapes.

C. Test Functions

To evaluate the performance of I2SM when combined
with PSO, five benchmark functions [52], [53] are selected
for testing and comparison with the results obtained by
the classical PSO. These functions represent a variety of
optimization challenges, including unimodal functions, com-
plex multimodal functions with numerous local optima, and
multimodal functions with fewer local optima. The details
of these benchmark functions are presented in Table 3. For
further details, refer to [52], [53].

o Ackley Function:

f(x) = —20exp | —0.2
3)
1
— exp (n ; cos(27raci)> +20
 Styblinski-Tang Function:
f(x) = % Zn: (z} — 1627 + 5a;) 4)

=1
« Rastrigin Function:
f(x) = (27 — 10 cos(2mz;) + 10) (5)
i=1

e Rosenbrock Function:
n—1
Fx) =" [100(zig1 —23)* + (1 —2:)?]  (6)
i=1
o Sphere Function:

fx)=> a3 (7)
=1

D. Parameter Settings for PSO algorithm and 12SM

For both I2SM-PSO and PSO, the social and cognitive
coefficients are set as ¢c; = 1.25 and co = 2.25, respectively.
The stagnation threshold is S = 5 iterations and the improve-
ment rate threshold is A = 5%. Moreover, the population
size of 50, and 30 is the maximum iterations number. To
reduce the influence of stochastic error, 50 independent trials
are run on each test function, and the mean results are
recorded for comparison. The parameter settings for PSO
were selected based on the work of [54].

E. Experimental Results

This section presents a comprehensive comparative analy-
sis of the I2SM-PSO and classical PSO algorithms, evaluated
in a range of benchmark test functions in varying dimen-
sional settings Table III.

The results, summarized in Table IV, highlight signifi-
cant improvements achieved by I2SM-PSO in terms of the
accuracy of the solution and robustness. These differences
underscore the enhanced ability of I2SM-PSO to effectively
balance exploration and exploitation, even in complex or
high-dimensional multimodal optimization problems.

Performance on Unimodal Functions:

o Sphere Function (f5): I2SM-PSO consistently
achieved significantly lower fitness values compared
to PSO in all dimensions, demonstrating superior
convergence properties. For instance, at 30 dimensions,
I2SM-PSO achieved a fitness value of 5.97 x 1073
in an execution time of 0.93 seconds, compared to
PSO’s 1.21 x 102 in 0.10 seconds. Although PSO
was executed faster, the marked fitness improvement
by I2SM-PSO validates its robustness in handling



TABLE III

BENCHMARK FUNCTIONS AND THEIR DIMENSIONS, BOUNDS, FUNCTION VALUES, AND MINIMUM FITNESS VALUES.

Function Dimension Bounds fi | Min Fitness Value
Ackley n —5,5 i 0
Styblinski-Tang n —-5,5 § —39.16599 X n
Rastrigin n [-5.12,5.12] | f» 0
Rosenbrock n [—30, 30] fa 0
Sphere n [—100,100] | fs 0

TABLE IV

COMPARISON OF I12SM-PSO AND PSO ON VARIOUS TEST FUNCTIONS.

Function | Dimensions | Best Fitness 2SM-PSO | Best Fitness PSO | 12SM-PSO Execution Time (s) | PSO Execution Time (s)
1 . X - . X - 12 A
f 5 7.35 x 10~ 6 7.35 x 10~ 6 0.13 0.04
f1 10 8.53 x 10~2 7.28 x 10~2 0.24 0.12
f1 15 6.00 x 10~2 1.34 x 1071 0.42 0.14
f1 20 1.17 x 10° 1.84 x 10° 0.61 0.33
f1 25 3.44 x 100 3.76 x 100 0.83 0.25
f1 30 2.32 x 100 2.94 x 100 0.93 0.19
fa 5 —1.82 x 102 —1.82 x 102 0.12 0.02
f2 10 —3.63 x 102 —3.63 x 102 0.25 0.02
fa 15 —5.17 x 102 —5.58 x 102 0.35 0.05
f2 20 —6.70 x 102 —6.65 x 102 0.74 0.12
f2 25 —8.38 x 102 —8.38 x 102 0.93 0.20
fa 30 —1.01 x 103 —9.67 x 102 0.93 0.12
3 5 2.00 x 100 1.99 x 109 0.12 0.02
f

3 10 1.11 x 10t 2.28 x 10! 0.23 0.04
f

3 15 3.67 x 10! 4.34 x 101 0.33 0.06
f

3 20 5.75 x 101 6.07 x 101 0.58 0.08
f

3 25 6.03 x 10! 1.09 x 102 0.76 0.11
f
f3 30 7.89 x 101 1.10 x 102 0.93 0.12
fa 5 1.34 x 10° 1.04 x 10T 0.11 0.03
fa 10 5.11 x 100 8.48 x 10! 0.31 0.05
fa 15 3.05 x 102 8.18 x 102 0.54 0.07
fa 20 1.55 x 10! 2.41 x 103 1.84 0.10
fa 25 2.15 x 10! 1.69 x 10° 2.54 0.11
fa 30 2.44 x 10! 2.77 x 10° 2.54 0.13

5 5 1.21 x 1073 1.75 x 10~8 0.13 0.02
f:

5 10 1.66 x 103 9.66 x 10~3 0.24 0.04
f:

5 15 3.21 x 10~3 1.32 x 10t 0.42 0.05
f:

5 20 3.89 x 10~3 2.33 x 10! 0.61 0.07
f:
fs 25 4.53 x 103 4.76 x 102 0.83 0.08
fs 30 5.97 x 10~3 1.21 x 103 0.93 0.10

simpler unimodal landscapes, justifying the additional

« Styblinski-Tang Function (f5): the results were mixed,

computation time.

Rosenbrock Function (f;): 12SM-PSO outperformed
PSO in all dimensions, especially in higher-dimensional
spaces. At 30 dimensions, [2SM-PSO obtained a fitness
value of 2.44 x 10! in 2.54 seconds, compared to PSO’s
2.77 x 10° in 0.13 seconds. Although the PSO was
executed faster, the ability of I2SM-PSO to navigate the
narrow and curved valleys of the Rosenbrock function
more efficiently highlights its superiority in optimizing
unimodal functions with challenging landscapes.

Performance on Multimodal Functions:

o Ackley Function (f1): I2SM-PSO demonstrated sig-
nificant improvements over PSO, particularly in higher
dimensions. For example, at 30 dimensions, the I2SM-
PSO achieved a fitness value of 2.32 x 10° in 0.93 sec-
onds, outperforming PSO’s 2.94 x 10° in 0.19 seconds.
Although the PSO was executed faster, the ability of
I2SM-PSO to explore complex landscapes and avoid
local optima justifies its slightly longer execution time.

with PSO outperforming 12SM-PSO in certain dimen-
sions. For example, at 15 dimensions, PSO achieved
—5.58 x 102 in 0.05 seconds compared to I2SM-PSO’s
—5.17 x 102 in 0.35 seconds. However, in 30 dimen-
sions, I12SM-PSO demonstrated superior performance
(—1.01x10% in 0.93 seconds compared to PSO —9.67 x
102 in 0.12 seconds), indicating its effectiveness in
higher-dimensional optimization tasks.

Rastrigin Function (f3): [2SM-PSO showed notable
advantages over PSO, particularly in dimensions greater
than 10. For instance, at 30 dimensions, 12SM-PSO
achieved a fitness value of 7.89 x 10' in 0.93 seconds
compared to PSO’s 1.10 x 102 in 0.12 seconds. Al-
though PSO was executed faster, the strength of [2SM-
PSO in navigating the highly oscillatory landscape of
the function and avoiding local optima makes it more
effective for complex multimodal problems.

The execution time increases as the dimensionality of the
problem scales, for both I2SM-PSO and PSO. 12SM-PSO



generally takes longer than PSO due to its enhanced mech-
anisms, such as multithreading and resource coordination,
which are designed to improve performance.

For smaller dimensions, execution times remain low and
manageable. However, as the problem size exceeds 20 di-
mensions, we observe a noticeable increase in execution
time, particularly for I2SM-PSO. This suggests that resource
demand (e.g. memory, CPU usage) scales with dimensional-
ity, highlighting the need for careful resource management
and optimization when addressing larger problems.

This analysis emphasizes the trade-off between execution
time and solution quality. Although PSO was generally
executed faster, 2SM-PSO consistently demonstrated better
fitness values, particularly in higher dimensions, validating
its enhanced optimization capabilities.

V. CONCLUSION

The proposed I12SM mechanism introduces a robust frame-
work to enhance metaheuristic optimization by integrating
advanced information management and evaluation strategies.
Using a Multi-Agent System (MAS), 12SM collects critical
metrics such as improvement rates and stagnation levels,
activating adaptive triggers to implement targeted actions.
The parallelism of the model facilitates simultaneous op-
timization and performance analysis, enabling significant
performance improvements while effectively balancing ex-
ecution time. Empirical results indicate that PSO combined
with I2SM achieves up to 90% better fitness outcomes than
conventional PSO, particularly in unimodal functions such
as Sphere and Rosenbrock, as well as complex multimodal
functions such as Rastrigin and Ackley, especially in higher
dimensions. Although PSO demonstrates competitiveness on
Styblinski-Tang, the ability of I2SM to dynamically balance
exploration and exploitation enhances both solution accuracy
and convergence speed. Importantly, although 12SM-PSO
incurs slightly higher execution times compared to standard
PSO, this trade-off is justified by the substantial gains in
solution quality and robustness.
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