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Abstract—Efficient management of agricultural water re-
sources has become increasingly critical due to climate variability
and rising global food demand. This paper presents a comprehen-
sive IoT-based system for real-time agricultural water forecast-
ing, integrating field-deployed sensors, cloud infrastructure, and
advanced machine learning models. The system automates data
collection, preprocessing, and model training, enabling accurate
and scalable irrigation management. We evaluate three models:
a lightweight XGBoost regressor for edge deployment, a Long
Short-Term Memory (LSTM) network for capturing temporal
patterns, and a hybrid LSTM–XGBoost model that combines
the strengths of both. The hybrid model achieved the best per-
formance with a Root Mean Squared Error (RMSE) of 0.01705
and a coefficient of determination (R2) of 0.95, outperforming
the standalone XGBoost (RMSE = 0.0184, R2 = 0.92) and
LSTM (RMSE = 0.0704, R2 = 0.86) models. Operational insights
regarding system latency, data reliability, and field maintenance
are also discussed, emphasizing the model’s robustness and prac-
tical deployment potential. The results underscore the viability
of data-driven irrigation forecasting for improving agricultural
sustainability and optimizing resource efficiency.

Index Terms—IoT, LoRaWAN, Precision Agriculture, LSTM,
XGBoost, Agricultural Water Forecasting

I. INTRODUCTION

Agriculture consumes nearly 70% of global freshwater
withdrawals, and climate induced variability in precipitation
and temperature further stresses water availability. This un-
derscores the urgent need for adaptive irrigation strategies to
ensure food security and sustainability [1]. Traditional irriga-
tion, based on fixed schedules or manual assessments, often
leads to inefficient water use and ecological consequences [3].
Recent advances in machine learning have shown promise in
optimizing these practices by improving water use forecasting
and management [2].

In parallel, the Internet of Things (IoT) has enabled real-
time environmental sensing through low-power networks like
LoRaWAN [4]. However, integrating this continuous data flow
with intelligent forecasting remains challenging. Existing so-
lutions often emphasize either edge analytics [5] or centralized

cloud pipelines [6], without offering unified, scalable systems
that bridge both domains.

Moreover, while deep learning models can capture com-
plex relationships, their high computational demands limit
deployment on resource-constrained farms [7]. In contrast,
lightweight models combined with efficient preprocessing can
deliver accurate predictions at scale. Yet most prior systems
still focus on individual components either the sensing, com-
munication, or modeling layer without offering a cohesive,
deployable framework.

To address these gaps, we propose a unified IoT machine
learning architecture tailored to medium scale agricultural
environments. Our system features cloud-based training and
deployment of a hybrid LSTM-XGBoost model that leverages
the sequential learning capacity of LSTMs and the predictive
robustness of XGBoost. This configuration delivers high ac-
curacy, centralizes model management, and remains adaptable
to diverse field conditions.

The key contributions of this work are:

1) Modular IoT System: Design and deployment of a
robust IoT infrastructure for real time irrigation fore-
casting, integrating in field sensors with a secure com-
munication and cloud-based inference pipeline.

2) Hybrid Forecasting Model: Development of a hybrid
LSTM-XGBoost model that combines temporal pattern
extraction and gradient-boosted regression for accurate
water efficiency prediction.

3) Benchmarking and Validation: Comprehensive perfor-
mance evaluation against recent IoT enabled forecasting
studies, demonstrating improved accuracy and opera-
tional feasibility.

The remainder of this paper is organized as follows: Section
II reviews related work; Section III details system design
and methods; Section IV outlines data and preprocessing;
Section V presents the modeling approach; Section VI offers
discussion; Section VII evaluates results; and Section VIII
concludes with future directions.



II. RELATED WORK

IoT integration in precision agriculture has progressed
rapidly, notably through wireless sensor networks such as
LoRaWAN [8] and energy efficient communication protocols
[22]. These technologies support continuous, low-power mon-
itoring of environmental conditions across large-scale farms.
Complementary advances in cloud computing have enabled
scalable data aggregation and remote decision making.

To reduce latency and offload computation, edge based
frameworks like EdgeLSTM [5] process sensor data locally,
improving responsiveness in real time irrigation control. Yet,
full integration of edge analytics, cloud infrastructure, and
predictive modeling remains uncommon.

On the modeling side, recent surveys have evaluated SVR,
RF, CNNs, and XGBoost in agricultural forecasting [12],
[18]. XGBoost is often favored for its predictive accuracy
and computational efficiency. Hybrid models such as attention
enhanced LSTM with boosting have emerged to better capture
nonlinear temporal dependencies while retaining interpretabil-
ity [17].

Past efforts like Gill et al. [19] and Ravi et al. [21] applied
SVR and XGBoost to soil and crop forecasting, while Hossain
et al. [20] explored image-based methods. However, these typ-
ically assume stable connectivity and do not address practical
deployment issues such as communication constraints, sensor
reliability, or edge cloud orchestration.

Federated learning has been proposed to mitigate data
privacy concerns in distributed systems [7], yet its adoption in
precision irrigation remains limited. Still, it offers a scalable
path forward, especially in multi farm scenarios with hetero-
geneous infrastructure.

Unlike these fragmented approaches, our work delivers a
unified architecture combining real time IoT sensing, secure
cloud communication, and a hybrid LSTM-XGBoost model.
This setup enables centralized deployment while leveraging
LSTM’s sequence learning and XGBoost’s robustness for
regression—bridging the gap between theoretical modeling
and field-ready forecasting.

Overall, while individual components wireless sensing, edge
computing, and ML models are well studied, holistic end-to-
end systems that integrate all layers into a practical, deployable
pipeline are scarce. This paper contributes to closing that gap.

III. MATERIALS AND METHODS

We propose a modular, five layer IoT architecture tailored
for real-world agricultural deployments. These layers Sensor
Layer, Edge Gateway, Communication Stack, Cloud Backend,
and Operational Controls collect, transmit, and process envi-
ronmental data for intelligent irrigation forecasting. The archi-
tecture emphasizes robustness, low latency, and scalability.

A. Sensor Layer

The system integrates environmental and operational sen-
sors:

• Soil Moisture/Temperature Sensors: Monitor root zone
water levels and thermal conditions.

Fig. 1: Overview of the proposed smart irrigation forecasting
system.

• Ambient Climate Modules: Capture temperature and
humidity affecting evapotranspiration.

• Water Flow Meters: Measure irrigation volume and
track usage patterns.

• Pump Energy Monitors: Log energy consumption to
detect inefficiencies.

B. Edge Gateway and Inference

Edge devices (e.g., Raspberry Pi 4) collect data via Lo-
RaWAN, apply timestamp alignment and filtering, and run
lightweight XGBoost models for rapid, local inference. This
ensures responsiveness under limited connectivity.

The cloud hosts the more complex Hybrid LSTM-
XGBoost model. The LSTM captures temporal patterns; its
latent representations are passed to XGBoost, which performs
the final regression. This separation balances edge autonomy
with cloud level precision.

C. Communication Protocols

A dual-layer stack supports reliable, secure data flow:

• LoRaWAN: Long-range, low-power transmission be-
tween sensors and gateways.

• MQTT over TLS: Lightweight, encrypted message de-
livery from gateway to cloud.

This setup minimizes energy use and ensures secure operation
across remote sites.

D. Cloud Backend

Cloud processing is managed via AWS IoT Core and AWS
Lambda. Incoming data undergoes:

• Mean imputation for missing values,
• IQR-based outlier filtering,
• One-hot encoding of categorical features,
• Normalization of continuous variables.

Processed data feeds model training pipelines and updates.
The LSTM encodes complex dependencies into feature em-
beddings, which XGBoost refines to predict irrigation effi-
ciency. Deploying this hybrid model in the cloud avoids edge
limitations while supporting centralized updates and system
scalability.



IV. DATA DESCRIPTION AND PREPROCESSING

A. Data Description

The dataset was constructed by merging two sources: a
Crop Recommendation Dataset (with features such as soil
nutrients, moisture, climate, pH, and irrigation method) and
an Agricultural Water Usage Dataset (with water consumption
and allocation records). They were integrated via crop type
and region, yielding 2,200 complete samples covering multiple
cycles and zones. The target variable, irrigation efficiency,
represents the ratio of water consumed to allocated water per
hectare a key sustainability indicator. The dataset is balanced
across efficiency levels, supporting robust supervised learning.

B. Data Preprocessing

We applied a multi-stage preprocessing pipeline to ensure
data quality, interpretability, and modeling stability.

Target Variable Engineering: Irrigation efficiency was cal-
culated as the ratio of consumed to allocated water. As shown
in Figure 2, the distribution is unimodal and centered near 1.0,
indicating mostly balanced irrigation behavior.

Fig. 2: Distribution of computed irrigation efficiency.

Feature Normalization: Numerical variables (e.g., temper-
ature, humidity, soil moisture) were scaled using the Ro-
bustScaler to reduce the influence of outliers. Figure 3 con-
trasts distributions before and after scaling.

(a) Before (b) After

Fig. 3: Boxplots of numerical features before and after robust
scaling.

Categorical Encoding: Features such as Crop, District,
and Irrigation Method were encoded using one hot encoding
to preserve class distinctiveness. Figure 4 shows example
distributions for crop type and irrigation methods.

Feature Analysis: To explore feature dependencies, we gen-
erated a correlation matrix (Figure 5). Moderate correlations
highlight the need for non linear models capable of capturing
complex interactions.

(a) Crop Types (b) Irrigation Methods

Fig. 4: Distributions of selected categorical features.

Fig. 5: Correlation heatmap for numerical features and irriga-
tion efficiency.

V. MODEL DESCRIPTION

This section details the regression models employed for
forecasting: LSTM, XGBoost Regressor and Hybrid Model
(LSTM + XGBoost).

A. LSTM Model

As part of the modeling pipeline, a Long Short Term
Memory (LSTM) network was implemented to explore deep
learning’s ability to capture complex relationships among
environmental, agronomic, and irrigation features. Although
the dataset was non temporal, inputs were reformatted into
pseudo-sequences to enable compatibility with recurrent ar-
chitectures.

The LSTM model was trained using standard supervised
learning procedures, with features preprocessed through one
hot encoding, normalization, and imputation. During training,
the model learned latent representations that capture high-
level interdependencies between inputs, such as the interaction
between soil moisture, temperature, humidity, and irrigation
strategy.

This model was evaluated using a held out validation set. It
achieved a root mean squared error (RMSE) of 0.07044 and
an R2 score of 0.860, demonstrating that LSTM networks can
effectively model irrigation water consumption in structured
sensor-driven agricultural datasets even in the absence of
explicit temporal dynamics.

B. XGBoost Model

The XGBoost (Extreme Gradient Boosting) model is a
tree-based ensemble learning algorithm designed to optimize



prediction accuracy through gradient boosting. Its architecture
relies on sequential decision trees, each correcting the residuals
of its predecessor. The model supports built-in regularization,
handles missing values natively, and is optimized for perfor-
mance and scalability.

In this work, XGBoost was trained using a pipeline that
included mean imputation for numerical features and one-hot
encoding for categorical attributes such as district, crop type,
and irrigation method. A randomized grid search over hyper-
parameters (n estimators, learning rate, and max depth) was
conducted using a predefined validation split. The objective
was to minimize mean squared error while maximizing R2 on
unseen data.

The model achieved a root mean squared error (RMSE)
of 0.0184 and an R2 score of 0.92 on the test set. Due to
its robustness, low-latency inference, and low computational
footprint, the XGBoost model was deployed on edge devices
for real time water consumption forecasting in field conditions.

C. Hybrid LSTM-XGBoost Model

To exploit the complementary strengths of deep neural
networks and gradient boosting algorithms, we designed a hy-
brid model that integrates Long Short Term Memory (LSTM)
networks with XGBoost regression. The purpose of this ar-
chitecture is to combine the feature learning capabilities of
LSTM with the robustness and interpretability of tree-based
ensembles.

The pipeline operates in two stages. First, an LSTM model
is trained on the full input feature set, reformatted as pseudo-
sequences to accommodate the network’s structure. Rather
than relying on raw predictions, the intermediate latent rep-
resentations generated by the LSTM are extracted. These
representations, optionally concatenated with selected input
features, are then passed to a downstream XGBoost regressor
to perform the final prediction.

This architecture allows the LSTM to capture nonlin-
ear interdependencies and higher level abstractions in the
data, which are subsequently refined by XGBoost’s gradient-
boosted decision trees. The hybrid model demonstrated im-
proved generalization compared to both standalone LSTM and
XGBoost implementations.

Empirically, the hybrid model achieved a root mean squared
error (RMSE) of 0.01705 and an R2 score of 0.950 on the val-
idation set, outperforming all baseline models. This confirms
the effectiveness of hybridization for modeling structured but
complex agricultural datasets.

D. Model Complementarity

The proposed pipeline combines models with distinct
strengths. LSTM networks are well suited for capturing
complex, non linear relationships across environmental and
irrigation parameters, while XGBoost is effective at modeling
structured feature interactions and handling noise in hetero-
geneous tabular data. Their integration in a hybrid architec-
ture allows the system to benefit from both learned latent
representations and robust gradient boosted refinement. This

complementarity significantly improved forecasting accuracy
compared to standalone models.

VI. EXPERIMENTAL RESULTS

We evaluated the proposed models—XGBoost, LSTM, and
the hybrid LSTM-XGBoost on a held-out 20% test set. The
goal was to assess forecasting accuracy, generalization, and
operational trade offs.

A. Test-Set Performance
Table I presents Root Mean Squared Error (RMSE) and R2

scores. XGBoost demonstrated strong accuracy with minimal
overhead, while LSTM performed moderately despite the non
temporal input format. The hybrid model outperformed both,
confirming its advantage in combining sequence learning and
tree based regression.

TABLE I: Performance of Forecasting Models on the Test Set

Model RMSE R2

XGBoost 0.0184 0.92
LSTM 0.0704 0.8604
Hybrid LSTM–XGBoost 0.01705 0.95

B. Prediction Accuracy Visualization
Figure 6 summarizes model performance. While both XG-

Boost and LSTM track observed values over time, the hybrid
model yields tighter alignment with actual consumption, as
reflected in its scatter plot.

(a) XGBoost (b) LSTM

(c) Hybrid Model (Scatter)

Fig. 6: Predicted vs. Actual Water Consumption Across Mod-
els

C. Comparison with Prior Studies
Table II compares our results with recent IoT-based irriga-

tion forecasting models. The hybrid model yields the lowest
RMSE, demonstrating superior generalization over traditional
SVR and prior XGBoost implementations.



TABLE II: Comparison with Recent IoT-Based Forecasting
Studies

Study Model RMSE
Gill et al. (2006) SVR 0.1392
Riaz Hossain et al. (2023) SVR 0.0600
Ravi et al. (2020) XGBoost 0.0240
Our Work (XGBoost) XGBoost 0.0184
Our Work (LSTM) LSTM 0.0704
Our Work (Hybrid) LSTM–XGBoost 0.01705

D. Operational Insights

• XGBoost offers high accuracy with low latency, ideal for
edge-based deployments.

• LSTM captures non-linear interactions but is more prone
to noise and drift.

• Hybrid achieves the best precision and is optimal for
centralized, high-resolution forecasting.

VII. DISCUSSION

Beyond predictive performance, several practical consid-
erations emerged during the design and deployment of the
proposed system.

First, the decision to deploy the hybrid LSTM-XGBoost
model entirely in the cloud was driven by computational
requirements. The LSTM component, although powerful in
capturing complex interactions, is not suitable for edge devices
due to its resource demands. Offloading inference to the cloud
ensures accuracy, but introduces latency that may not be
tolerable in ultra low latency scenarios. However, in our use
case daily or periodic irrigation planning rather than second
by second actuation this trade off is acceptable.

Second, the system’s reliance on stable communication
links (LoRaWAN and MQTT over TLS) introduces points of
vulnerability in rural deployments. While LoRaWAN provides
long range coverage, factors like packet collision, signal atten-
uation, and gateway failures can lead to data loss or delays.
Ensuring redundancy through multi gateway setups or caching
at the gateway level is essential for robustness.

Third, environmental interference and sensor degradation
are non trivial risks. Soil moisture sensors, for instance,
can exhibit drift or failure over time. To address this, we
employ robust preprocessing (IQR filtering, imputation) and
recommend periodic calibration of sensors in long-term de-
ployments.

Finally, while the system currently operates as a centralized
cloud-hosted service, future extensions could explore federated
learning or edge augmented inference to improve resilience,
data privacy, and autonomy under intermittent connectivity
conditions. These strategies would also help decentralize con-
trol and make the system more scalable across multiple farms
or disconnected zones.

Security and Privacy Considerations

To ensure the integrity and reliability of field-deployed
IoT systems, several security and privacy concerns must be
addressed. Our current architecture leverages MQTT over TLS

for secure, encrypted communication between edge gateways
and the cloud, which protects against basic interception and
man in the middle attacks. However, additional risks such as
sensor spoofing, replay attacks, or false data injection remain
plausible, particularly in unmonitored rural environments. To
mitigate these risks, future implementations may incorporate
lightweight authentication protocols at the sensor level, crypto-
graphic device IDs, and anomaly detection algorithms capable
of flagging suspicious data patterns. These measures would
enhance trust in the decision-making pipeline and support
secure, long-term scalability across distributed agricultural
networks.

VIII. CONCLUSION AND FUTURE WORK

This study presented a complete IoT-enabled machine learn-
ing framework for real-time forecasting of agricultural water
consumption. The proposed system integrates in-field envi-
ronmental sensing with a LoRaWAN–MQTT communication
layer, a cloud based data processing pipeline, and a hybrid
machine learning architecture that combines Long Short-Term
Memory (LSTM) networks with XGBoost regression. This
hybrid model is designed to capture both complex temporal
dependencies and structured feature interactions in environ-
mental and agronomic data.

Experimental results demonstrated that the hybrid LSTM-
XGBoost model achieved the best performance (RMSE =
0.01705, R2 = 0.95), outperforming both the standalone XG-
Boost model (RMSE = 0.0184, R2 = 0.92) and the LSTM
model (RMSE = 0.0704, R2 = 0.8604). These findings vali-
date the effectiveness of the hybrid design in capturing both
sequential and structural data dependencies, and its superiority
over recent IoT-based forecasting benchmarks in the literature.
The system also highlights the practicality of centralized infer-
ence for complex models in resource-constrained agricultural
settings.

Future Work

To further enhance the system’s scalability and real-world
applicability, several research directions are proposed:

• Federated Learning Across Farms: Implement decen-
tralized learning strategies that allow individual farms
to collaboratively train global models without sharing
raw data. This supports privacy preservation and en-
ables adaptation across heterogeneous agricultural envi-
ronments.

• Secure Communication Protocols: Extend the current
MQTT over TLS stack with lightweight cryptographic
authentication schemes and anomaly detection algorithms
to prevent spoofed sensor data or replay attacks.

• Edge-Enabled Hybrid Inference: Investigate low-power
inference accelerators (e.g., Coral TPU, NVIDIA Jetson
Nano) to evaluate the feasibility of running portions of
the hybrid model locally under limited connectivity.

• Multi-Agent Water Allocation Optimization: Explore
the use of multi-agent reinforcement learning (MARL)
to model water distribution decisions between farms or



zones, aiming to optimize global water use under shared
constraints.

• Cross Climate Model Transferability: Evaluate the
generalizability of the current hybrid model in diverse cli-
matic, soil, and irrigation contexts using transfer learning
or meta-learning techniques.

Through these extensions, this work lays the foundation for
next-generation precision agriculture solutions that combine
AI, IoT, and cloud intelligence to support scalable, sustainable,
and data-driven irrigation practices.
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