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Abstract— This study presents the Flexible Representation
for Quantum Images (FRQI) Pairs method, a novel approach
that leverages Quantum Recurrent Neural Networks (QRNN)
for image classification. The proposed method achieves an
accuracy of 74.60% on the full Modified National Institute of
Standards and Technology (MNIST) handwritten digit data set,
demonstrating its effectiveness in handling quantum encoded
data for classification tasks.

By reducing the size of the QRNN by the exponential
factor, the FRQI Pairs method highlights the potential of
integrating quantum computing principles with neural network
architectures, offering a promising direction for advancing
quantum machine learning.

The research evaluates the FRQI Pairs method against
existing quantum and classical models, demonstrating its com-
petitive performance against other state-of-the-art approaches
and showing potential for future advancements in the field.
This research opens avenues for further exploration of quantum
preprocessing and hybrid model architectures, marking a step
forward in the application of quantum machine learning.

I. INTRODUCTION

Quantum image processing is a promising field in quantum
computing. Starting with Venegas-Andraca and Bose’s [1]
qubit lattice representation for quantum image encoding, the
description of quantum images came right after this [2].
Quantum states describe patterns for two main reasons: to
improve classification efficiency [3] and to provide valuable
models for traditional issues [4]. The Flexible Representation
for Quantum Images (FRQI) was first proposed in [5] and
was further developed in [6]. This research focuses on
quantum image encoding and quantum machine learning
classification methods applied to the MNIST (Modified Na-
tional Institute of Standards and Technology) dataset.

The field of quantum machine learning is expanding
rapidly, and new methods emerge, sometimes inspired by
the classical machine learning methods or some developed
purely for quantum computers. Some of the recent methods
are inspired by traditional machine learning techniques, e.g.,
quantum state vector machine (QSVM) [7], [8], [9], [10],
quantum k-nearest neighbors (QKNN) [11], [12], [13], and
quantum nearest mean classifier (QNMC) [14], [15], [16].
In the family of deep methods: variational quantum circuits
(VQC) [17], [18], [19] inspired by classical neural networks,
quantum tensor networks (QTN) [20], [21], [22], quantum
convolutional neural networks (QCNN) [23], [24], [25], [26],
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[27], random quantum neural networks (RQNN) [28] and
quantum recurrent neural networks (QRNN) [29], [30].

Among the last group, there appears to be no agreement on
how to phrase the architecture name, namely the words quan-
tum and recurrent appear in both combinations, resulting in
the recurrent models being referred to as QRNN or RQNN.
The authors of this paper will use the abbreviation QRNN
for recurrent networks and RQNN for random networks.

The paper is organized as follows. Section II describes
briefly the MNIST dataset and the theoretical background
on existing methods utilized, namely FRQI and QRNN.
Section III explains the experimental setup and the newly
proposed FRQI Pairs method together with the results of the
experiments. Section IV compares the results of Section III
with the state of the art. Section V summarizes the most
important advantages and disadvantages of the proposed
method together with the suggestions for the future improve-
ments.

II. SUBJECT

The prototyping results of this paper are based on the
thesis [30]. The work proposes a novel approach to the
classification of quantum-encoded images using QRNN [29]
with the input data encoded in a quantum way, using the
FRQI [5]. The use of quantum encoding allows for a futur-
istic assumption that the classification is performed on some
universal quantum computer where the encoded data is stored
in a quantum memory.

However, such devices are not available in the Noisy In-
termediate Scale Quantum (NISQ) [31] era, and the disposal
of the data preprocessing steps required every time an image
is loaded into the quantum system would significantly reduce
the classical processing overhead.

A. MNIST Database

The Modified National Institute of Standards and Tech-
nology (MNIST) database contains handwritten digits stored
in the form of 28 × 28 pixel images with 0...255 values
representing the pixel intensity. A scaled-down sample image
is shown in Fig. 1. The dataset has been chosen due to
its wide use for benchmark purposes, hence allowing for
broad comparison with classical and quantum methods. The
recent criticism of MNIST benchmarks for quantum machine
learning algorithms [32] suggests that further research is
needed to test the approach on different datasets and from
other perspectives.
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Fig. 1. Comparison of the scaled image from MNIST database (left) and
its retrieved version from FRQI encoding (center). Aggregated results of
10000 measurements of the FRQI representation of the image (right).

B. Flexible Representation of Quantum Images

The FRQI method proposed in [5] allows efficient storage
of single channel images using only O (⌈log2 n⌉) qubits,
where n is roughly the side length of the image. The method
also allows easy manipulation of the image properties, thus
placing it and its descendants as a versatile image storing
and manipulation method for a quantum computer. The
method has been improved to support multichannel images
in further work [33], [34], [35]. Since the MNIST dataset
used for classification includes only grayscale images, the
FRQI method for encoding has been used for simplicity.

The method encodes the position of the image pixel using
⌈log2 W ⌉ and ⌈log2 H⌉ qubits for the width and height of the
image, respectively, plus an additional single qubit for color
value encoding ν = ⌈log2 W ⌉+⌈log2 H⌉+1. Assuming that
the image is bounded by a square envelope of dimension 2n,
the resulting number of qubits is

ν = 2n+ 1. (1)

We can describe the resulting FRQI image state |I⟩ as

|I(θ)⟩ = 1

2n

22n−1∑
x=0

(cos θx |0⟩+ sin θx |1⟩)⊗ |x⟩ , (2)

where θx ∈
[
0, π

2

]
and x ∈

{
0, 1, . . . , 22n − 1

}
. The

original MNIST pixel values are integer values from the
range {0, 1, . . . 255}, thus they have to be uniformly scaled
into [0, π

2 ]. An example of a scaled MNIST image, with its
FRQI measurements and retrieved version, is shown in Fig. 1.

C. Quantum Recurrent Neural Networks

Bausch [29] presents the first QRNN model capable of
performing complex tasks such as sequence learning and
digit classification. QRNN applies an enhanced version of a
quantum neuron presented in [36] with amplitude amplifica-
tion to create a nonlinear activation function. The model was
tested in various tasks, including memorization, sequence
prediction, and classification of the MNIST digits data set,
demonstrating its ability to handle high-dimensional training
data.

The original implementation of QRNN shows results that
have an impact on quantum machine learning, especially in
the management of long-sequence data without the gradient
vanishing problem typical of classical RNNs.
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Fig. 2. Schematic diagram of the FRQI Pairs Model [30] for 4×4 image.
The approach uses all combinations of {c, x, y} qubits as inputs to QRNN
cells, where x, y correspond to the X and Y qubits for position encoding.

III. METHODS

A. Examined Models

The thesis [30] introduces a quantum-specific approach
to combine images encoded in a quantum way with QRNN
[29]. The QRNN architecture has been selected due to its
proven applicability in the image classification task. The
research aims at verification of the performance with more
sophisticated encoding methods. The novelty of the presented
approach is the use of input images encoded by the FRQI
method as described in Section II-B. The data set used for
prototyping is the MNIST handwritten digits, scaled down
from the original 28× 28 to 8× 8 for most cases.

The original work presents three models:
1) The single-cell model takes as input all the outputs

of the FRQI encoding. Information passes through the
cell only once.

2) The naive model, which is an enhanced version of the
single-cell model with multiple repetitions of the cell.
The author uses two-cell models in his thesis.

3) The FRQI Pairs model implements the architecture
of a full QRNN, where each cell takes as an input
combination of parameters responsible for coding color
and position.

The author tested all three models with more than 40
different sets of parameters, such as the number of hidden
layers in the cell, the size of the input image (in some cases,
28× 28 images are used), and the optimizer learning rate.

FRQI encoding and QRNN have been implemented using
Tensorflow Quantum [37] and Cirq [38] Python libraries,
while model training has been performed using Keras [39].
All the missing details related to model training can be found
in [30].

B. FRQI Pairs Model

The feature of this approach is the fact that each cell takes
as its input two pieces of information (pairs):

• the qubits responsible for channel color intensity (e.g.,
for FRQI – single qubit for grayscale value) and

• the qubits responsible for encoding the pixel position
(e.g., for 2D images – two qubits for coding the X-Y
position).

The total number of cells depends on the number of combi-
nations between x and y qubits, since each cell takes as input
one of those combinations. If the image has a dimension of
2n as defined in (1), the resulting number of cells can be



Fig. 3. Aggregated results of the four champion FRQI Pairs models training
from [30]: loss function - categorical cross-entropy (left), accuracy (right).

Fig. 4. Average confusion matrix of the four champion FRQI Pairs models.

calculated as
N = n2. (3)

For comparison, the number of cells in a direct implementa-
tion of a QRNN, where each cell takes one pixel of the same
image, as in [29], requires an exponentially larger number
of cells, compared to (3), that is (2n)2 = 22n. An example
diagram of the FRQI Pairs model for a 4×4 image is shown
on Fig. 2.

During the prototyping and tuning phase, increasing the
number of QRNN working memory qubits had a positive
impact on the test results, with the highest examined number
of 4 qubits. Hence, the final QRNN parameters were set to
4 memory qubits and a single deep layer for each cell. The
best model used 11 qubits in total (4 QRNN memory + 7
FRQI) and six cells, and its number of trainable parameters
was 716 (636 in PQC, 80 for softmax).

From the training graphs presented in Fig. 3 it is clear
that training and validation loss decrease steadily, so the
model did not overfit. The model achieved a test accuracy
of 74.6% with a confusion matrix of the test set presented
in Fig. 4. It is visible that the model can generalize well and
for each class most of the predictions lie on the diagonal
of the confusion matrix. There appears to be an outstanding
group where the models confused the actual digit nine with
four. This could be improved by data preprocessing methods
and also potentially by using higher-resolution images, so a
model has more information to use for predictions.

IV. COMPARATIVE ANALYSIS

In this section, the authors present the comparison of the
results with papers that meet the following criteria:

TABLE I
SUMMARY OF THE WORKS USED FOR COMPARISON IN SECTION IV.

Ref. Dataset Modification Image Encoding Classifier Test Accuracy

[19] 2000+1000 images1,
padded to 32× 32, PCA

Amplitude, angle,
hybrid encodings VQDNN Binary: 99.00%,

10-class: 80.00%

[27] 1000 images,
scaled to 8 × 8

AQSP QCNN Binary: 96.65%

[28]
4-class dataset (24k+4k1),
noised, classical deep em-
bedding into 128 values

Amplitude encoding RQNN 4-class: 97.20%2

[29]
Full dataset (60k+10k1),
scaled to 10 × 10,
10-class only: PCA, t-SNE

Grayscale value
X-gates binary
representation

QRNN Binary: 99.00%2,
10-class: 95.00%2

[30] Full dataset (60k+10k1),
scaled to 8 × 8

FRQI QRNN 10-class: 74.60%

[40] 800+200 images1,
scaled to 7 × 7

Continuous-variable
encoding QRNN Binary: 85.00%

[41]
Binary: 5000+21001,
10-class: full dataset3,
padded up to 32 × 32

Amplitude encoding QCNN Binary: 96.30%,
10-class: 74.30%

1) the use of the MNIST dataset,
2) the use of accuracy metrics.

With the conditions fulfilled, it is possible to compare
gathered publications with [30]. The summary of this section
is presented in Tab. I.

The final results of [30] show that the proposed model
is able to grasp the principles of the underlying data dis-
tributions. Its test accuracy is 74.6%. However, not ideal,
its accuracy at the level of magnitude allowing reasonable
comparison to three of the presented works, namely [40],
[19] and [41].

The work presented in [40] implements QRNN, which
was tested against a binary classification of the MNIST
digits 3 and 6. The results confirm the QRNN utility for the
classification of handwritten digits. However, they suggest
that the classical LSTM model with a similar number of
parameters performs better, what might suggest that the
QRNN model is inefficient in image classification.

The paper [41] introduces QCNN that is a different family
of models. The model was trained to classify all ten digits,
and except for the 0-padding to 32 × 32 size, no initial
data transformation was performed. The numbers of trainable
parameters of the model from [30] and [41] are at a similar
level: 716 and 379, respectively. For both models, the final
accuracy is also similar: 74.6% and 74.3%, while the data
used to train the final model have higher resolution in the
case of [41]. Both results suggest the QRNN model might
have a higher learning potential than what was achieved
in [30], and may achieve even better results for full-sized
images. From (1) and (3) we find that the 28 × 28 FRQI
encoding needs 11 qubits, so the circuit will use 15 or more
qubits, depending on the number of memory lanes, while
the number of cells will increase to 25. The increase in the
number of cells and qubits will result in a higher number
of the model trainable parameters. However, it will also
increase the model training capacity and potentially improve
the results.

The authors of [19] presented a VQDNN model, which
resembles a densely connected network. They managed to

1Training+test set sizes
2Maximum presented test accuracy for given task
3Sampled by 100 in each training epoch



drastically reduce the number of qubits required to operate
the network, providing a solution that uses only ten qubits
for 10-class problems. For the features extracted using the
PCA, the authors experimented with amplitude and angle
encoding, as well as their combination. The total number
of parameters for the deepest model was 430. The depth
of the model increases the model training capacity, and
the best model achieved approximately 80% accuracy. The
proposed model of the VQDNN network proved its potential
for experimentation to replace the internals of the QRNN cell
from [30].

The use of PCA as the feature extraction method should
also be considered in the further development of FRQI-
QRNN models, as its impact was shown in [29] and [19].
However, the method might not be directly applicable to the
problem [30] is trying to solve, i.e., the quantum ML model
operating on already quantum-encoded data. Despite the fact
that the PCA method can help reduce the dimensionality
of feature spaces, thus reducing the model complexity and
allowing for higher performance, with the same number of
trainable parameters–one can imagine that the data stored in
future quantum memory would be encoded and compressed
using different means. The applicability of the quantum
version of PCA [42], [43] or other methods such as [44]
to the feature preprocessing phase should also be explored.

Other works that use the amplitude encoding method for
the classification of MNIST datasets are [28], [27]. They
both present classifier types different from QRNN, but the
authors managed to achieve high test accuracy on limited
datasets. Random QNN [28] shows high robustness against
noisy data. However, the image embedding is performed by
a classical densely connected layer, which, similarly to PCA,
offloads some part of the solution to the classical part.

The Approximation Quantum State Preparation (AQSP)
method for image encoding uses a simulated quantum circuit
to train the image representation and has a time complexity
of only O(n) [27]. The authors also combine the AQSP
method with the proposed QCNN framework. The design of
a hybrid recurrent network with convolutional and pooling
input layers might help make the FRQI-QRNN architecture
less dependent on the input image size and reduce the
complexity of the recurrent part.

V. CONCLUSIONS

The presented state-of-the-art methods trained to solve the
MNIST classification task prove that the area of Quantum
Machine Learning has the potential to solve real-life machine
learning problems.

The new FRQI Pairs architecture, presented in [30], re-
quires an exponentially lower number of recurrent cells
compared to [29] (n2 vs. 22n (3)) which may lead to shorter
execution times thus a lower chance of decoherence, and a
higher computational efficiency during the inference phase
if applied to real-world problems.

An important aspect of the presented architecture is that
it utilizes a well-grounded FRQI method as its input, which
allows to use the method’s data encoding advantage over the

classical representation. This saves the processing time at
the cost of slightly larger number of qubits, but without the
need to leave the quantum realm to use the classical pixel
values for qubit encoding. Assuming that in the future we
would be able to persistently store data in quantum form,
the FRQI Pairs method would be a solid starting point in the
development of fully quantum neural networks.

Another important feature of the FRQI Pairs method is
that it manages to train on the full MNIST dataset and has
proven performance comparable to other methods such as
those proposed in [43], [19]. Many other presented works
struggle to capture the idea of the MNIST data base, that
is a dataset for benchmarking machine learning models and
ideas based on reliable and repeatable dataset. MNIST is
meant to be taken as a whole, to enable direct comparison
with numerous classical models.

Although areas were left to improve compared to [29],
the method has the potential to be extended by various
preprocessing routines [29], [44], [42], [43] and layer/model
architectures [19], [41], [27]. The approach of the other
works to the problem suggests that the research from [30]
should also be extended to a binary image classification case
for broader comparison possibilities.
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