A Serious Game for Learning of Variables and Operators Priority
Rules in Programming

Chaker Abid, Hedia Mhiri Sellami and Lamjed Ben Said
abidchaker@yahoo.fr, hedia.mhiri@isg.rnu.tn, bensaid_lamjed@yahoo.fr
Laboratory of Strategies for Modeling and ARtificial intelligence
Institut Supérieur de Gestion de Tunis, Université de Tunis

Cité Bouchoucha 2000 Le Bardo,Tunis, Tunisia

Abstract— The use of serious games has shown immense
importance in several fields such as education and in particular
the learning of computer programming. Several experiences
have shown the positive impact of integrating serious games into
programming learning. Some programming concepts present
many difficulties for learners, especially for beginners, such as
variables and operator priority rules. In this paper, we present
the design, development and evaluation of a serious game called
"AppProg Game" dedicated to learning these two programming
concepts: variables and the priority of arithmetic and logical
operators. The evaluation took place with a final class scientific
section in a secondary school in Tunisia at the level of learning.
The result of this experience showed that the integration of
serious games helped learners to assimilate the two concepts
discussed. The experiment showed that learners did not progress
in the same way. For this reason, in our future experiment, we
plan to adapt the game to the learners' profile using artificial
intelligence techniques.

I. INTRODUCTION

Learning to program has become an important skill for
students to assimilate. Some studies have shown that it
presents many difficulties for learners, especially beginners.
These difficulties have led to a very high drop-out rate [1], [2]
[1]. [3] reported that this rate varies from 25% to 80% for
undergraduates in introductory programming courses
worldwide. Therefore, [4] report that it is best for specialists
in this field to focus on teaching methods to overcome these
difficulties. The literature mentions several methods, such as
the use of games. Games create conditions that encourage
learning, such as interaction, feedback and the active
participation of players. It helps develop skills in problem-
solving, structuring and transposing knowledge, and promotes
information reinforcement [5]. The use of games has gone
beyond mere entertainment to achieve useful objectives
known as serious games. A serious game is an artifact that
combines the entertainment aspect of video games with a
serious aspect to encourage players to achieve a serious
objective. The uses of serious games in education or
educational games have attracted specialists, because they are
efficient and motivating environments that enhance learning
[6]. The literature has mentioned many serious games used in
different disciplines, such as history, languages, mathematics
and programming learning. Integrating serious games into
learning represents a promising pedagogical alternative. This
article describes the design, development and evaluation of
our serious game called "AppProg Game" dedicated to the

learning of two programming concepts: variables and operator
priority rules by secondary school students. These two
concepts need to be well understood because we use them to
read or write a program. In addition, many programming
concepts are based on these two concepts, such as loops and
functions. Also, the execution of a loop depends on conditions
formed by variables and separated by logical operators.
Programmers must be able to use arithmetic and logical
operators in order to correctly evaluate an arithmetic or logical
expression in order to understand the function of a code.

These two concepts are difficult to understand, especially
for novice programmers. For example, variable names in
programming are very important and must follow specifics
rules. The name should represent the contents of the variable
in a meaningful way to help the reader understand the
program. Moreover, the priority of operators changes from
one programming language to another and sometimes differs
from mathematical rules. For these reasons, we have chosen
to study them through this work. We aim to answer the
following question:

Does the use of serious games help learners understand the
two programming concepts mentioned?

The rest of this document is divided into 6 sections. In
section 2, we identify programming learning difficulties and
serious games dedicated to programming learning. In Section
3, we present the design and development of our game. Next,
Section 4 describes the methods used, and Section 5 presents
the application of the game and the analysis of the results
gathered. Finally, we conclude with the outlook for this work.

II. STATE OF THE ART

This section is divided into two parts. In the first part, we
present some of the difficulties associated with learning
programming, in particular variables and the precedence of
operators. Then, in the second part, we present some serious
games used for learning the two programming concepts
studied at secondary school level.

A. Difficulties in Learning Variables and Operators
Priority in Programming
The Learning to program presents many difficulties for
learners, especially beginners, and even for teachers [7]. The
literature mentions several difficulties that can be described as
follows:

Difficulties related to problem-solving skills [8]: [7] have
shown that the lack of these skills is explained, firstly, by
difficulties in understanding the problem because they have
misinterpreted the problem statement or they start writing the
solution directly before they have fully understood the
problem. Also, they have difficulty using their prior
knowledge (knowledge transfer). Indeed, they can’t make the
analogy between the solutions of previously studied problems
and the current problem.

Problems related to learners' conceptions: learners,
especially beginners, have misconceptions that prevent them
from understanding variables and operators priority. They
consider that variables can contain several values at the same
time [9]. According to [10], some students consider
assignments to be symmetrical, e.g. y =2 is the same as 2 =y.
These misconceptions prevent them from understanding the
code because they do not assimilate the changes in values of a
variable during the execution of a code. According to [11],
learners who do not master variables have difficulty
assimilating other concepts such as loops. For example, they
don’t assimilate the automatic change of counters in loops.
[12] mentioned that these misconceptions are a demotivating
factor for learners.

Difficulties related to the variable: learners who do not
have a perfect command of variables are unable to identify
syntactical and logical errors. When an error occurs, they
cannot find its meaning to correct it. Also, [13] showed that
novice programmers do not name variables correctly, which
can affect the quality of the program. In this context, [14]
indicate that assigning more meaningful names to variables is
more beneficial for code comprehension, debugging and
program quality. [15], [16] have identified different roles for
this concept: data (fixed wvalue), counter (stepper),
accumulator (gatherer), programming intermediary
(temporary). For this reason, it can cause cognitive conflicts
in secondary school learners.

Problems with teaching methods: the teacher focuses on
teaching the programming language and syntax rather than the
problem-solving approach. According to [17], programming
consists of two phases: problem solving and code writing, and
each phase involves specific skills. The problem-solving
phase is the most important, as it forms the basis for the second
phase, and teachers must give it priority. As indicated by [8],
programming should be taught using personalized rather than
traditional pedagogies. The teacher must monitor each learner
individually and help him or her to solve his or her problem.
This supervision is difficult to achieve because of time
constraints and the content to be learned. The teacher must
adopt the best teaching strategy according to several criteria,
such as the skills of his or her students. [7] report that
programming is a science that requires a high level of skills
such as abstraction, generalization and critical thinking. In
addition, programming languages can sometimes include a
complicated syntax that is difficult to memorize. The learner
must perform two difficult tasks: constructing the algorithm
and mastering the syntactic rules of the programming
language.

Difficulties linked to the precedence of operators: when
evaluating an expression in programming, some students use
mathematical rules. This can sometimes produce incorrect

results, as the priority of operators is not the same in all
programming languages.

B. Serious game for learning variables and operator
priority in programming

Serious games are usually used to teach the two concepts
studied simultaneously with other programming concepts,
such as loops and functions. In this section, we present some
serious games dedicated to learning programming that deal
with these two concepts even implicitly. Some games allow
learners to execute existing code to understand their function.
For example, Robot ON! [18] a puzzle-style serious game for
teaching programming to beginners, in which learners run
existing programs to understand their purpose. It develops
learners' critical thinking skills and helps them understand the
problem-solving approach. Players use variables to store and
retrieve values that represent many states in the game.

Another type of games provides incomplete codes and
asks the learner to complete them using programming
concepts such as variables and arithmetic and logical
operators. Debugging is a difficult task, especially for
beginners. In Code Hunt [19] and RoboBUG [20], the player
runs programs and corrects errors to move from one level to
the next. The player guides an avatar through the code to
identify bugs and make the appropriate changes. A dialogue
box appears at the bottom of the screen with comments on the
debugging to be carried out. Players use variables to identify
syntax and logic errors.

In a third kind of games, the player write code, and then
debug it. Codecombat [21] is a puzzle game developed to
teach programming concepts to beginners. It’s made up of
levels classified by degree of complexity. Players solve
problems by writing code using variables and priority
operators. He can write the complete program and execute it,
or do it line by line. PlayLogo 3D [22] a competitive game to
introduce children aged 6 to 13 to programming. Players
control a robot, trying to fix their opponents’ position and
eliminate the gap between the two robots by writing LOGO
commands. The use of variables to show the change in
position values enables learners to understand the change in
state of the variable in the code. The Gidget game [23] is a
serious programming game that helps students understand
debugging using a robot called Gidget. The player controls
Gidget's programming by writing programs (list of
commands) in a programming language that helps Gidget
clean up the plant to liberate toxic substances and avoid the
threat of animals. Gidget has limited energy, and if the player
doesn't achieve the level objectives before Gidget runs out of
energy, Gidget will fail and the player will have to try again.
The use of the variable representing energy shows the change
in state of the variable as the program is executed.

[24] proposed a serious game aimed at learning operator
priority rules in evaluating an expression in the context of
teaching introduction to programming. In this game, the
player moves through a 3-dimensional maze, each time giving
the solution to a given problem, which consists of evaluating
an expression formed by operands and operators.

These serious games do not explicitly address the two
concepts studied. They are used at the same time as other

concepts, and the learner cannot easily assimilate them - for
example, the counter in the loop. Also, many games use a list
of commands to write or execute a program, rather than
variables. [25] have shown that understanding of variable in
programming is fundamental to manipulating loops, and that
students have difficulty of understanding this concept. [26]
considers the variable in programming to be didactically
difficult. [27] has shown that this concept has several roles in
the same program, depending on it's deployment. Moreover,
learners do not always evaluate an expression correctly in
introductory programming courses. They use the same rules
as in mathematics, but these do not always apply to the
programming language. [24] showed that in some
programming languages expressions are evaluated according
to operator precedence rules, while in others they are always
evaluated from left to right.

These two concepts, variables and operator priority rules,
are fundamental to programming and understanding them is
necessary, especially for beginners. As mentioned above, we
are going to use a serious game to help learners assimilate
these two concepts. In the following section, we describe the
design and development of this serious game.

III. DESIGN AND DEVELOP A GAME "APPPROG GAME"

This section consists of two parts. We start with the design
of our game then we describe it.

A. Game design

The design process of a serious game is a set of steps that
describe the two dimensions of a serious game : playful and
serious dimensions [28]. Literature has mentioned several
models of serious game design. We chose to use the DICE
design model (Fig. 1) composed of 4 steps [28]. Our choice
is made with reference to the simplicity and clarity of this
model and especially its iterative nature which allows us to
make corrections as much as necessary [28]. The first step
"Define" describes the specification of the serious content,
which in our case consists of learning two programming
concepts: variables and operator priority rules in secondary
education. The second step "Imagine" describes how to
combine the two playful and serious dimensions of play,
which can be done in two ways: extrinsic and intrinsic [29]. In
the intrinsic approach, the two dimensions are combined in
such a way that they cannot be separated. The serious
dimension is integrated with the playful dimension. We prefer
the extrinsic approach, in which the two dimensions are
separated and the game represents a reward following the
course. The third "Create" stage concerns the creation of the
game, with its two phases described below: design and
development. In the development phase, we used the Python
language. Finally, the fourth step "Evaluate" consists of
evaluating the game to determine whether it meets
expectations and to make any necessary corrections.

Figure 1. DICE Model [28]

D[’pul'I:>[Définir t:}l lmagincrl

ltérations

Evaluer iy
=) Arrivée

B. Description of the game

AppProg Game contains two unordered levels (figure 2).
The first level deals with the notion of variable (initialization,
update and final value). It illustrates a fight between an avatar
and enemies in a 2D scene. At the top of the screen, two
variables are displayed, called score and health, to illustrate
the player's score and power evolution respectively. They start
from 0 and 1000 points respectively, to explain to the player
the concept of initializing a variable. In the game, the learner
moves an avatar left, right, forwards and backwards in the
scene using the arrow keys on the keyboard, and fires bullets
at enemies using the space key. When a bullet hits an enemy,
the score increases by 1. Similarly, enemies also throw
projectiles at the avatar. When a projectile hits the avatar, the
health variable is decremented by 50 points. When the value
of the health variable reaches 500 points, the text color of this
variable turns red to inform the player of his critical state. We
have chosen to display two additional texts containing the
evolution of the content of the two variables: the increase of
the score and the decrease of the health variable, so that the
learner can follow the instantaneous evolution of the values of
the two variables. The game ends when the player's score
reaches 12, hence the player wins. A scene of joy is carried
out to celebrate the event. However, when the health variable
reaches 200, the game stops, and the player is loser. A scene
of discontent is displayed.

Figure 2. Level 1 and 2 of the game

| Healthl = 1000 Score igitial = 0
Health = 850- 50= 800 Score +-1=4

Cyiz

START 8

The second level contains a quiz consisting of a list of
expressions to be evaluated by the player. Each expression
consists of three operands separated by two operators
(arithmetic or logical). When evaluating each expression, the
learner must choose the correct answer from a list of choices
accompanying the expression. Expressions are not ordered,
and the player moves on to the next question, regardless of
whether the answer is correct or not. When a correct answer is
given, the score increases by 10 points. As the expressions are
randomly generated, the learner can repeat the game as many
times as he or she likes. At the end of the game, the player's
score is displayed, along with a smile to express appreciation.

IV. METHODS

We applied this game with a 4th grade sciences containing
78 students in a secondary school in Tunisia. We divided our
sample into two groups of 39 students with heterogeneous
levels in programming based on their results in a test carried
out before starting the game. We applied the game with the
first group of 28 boys and 11 girls, and performed the course
in the usual way (without using the game) with the other group
of 10 girls and 29 boys.

We carried out a pre-test and a post-test, each consisting
of 10 questions on the same content, with both groups. Each
test included 4 questions on variables and 6 questions on
operator priority rules. The first two questions on variables
focus on variable naming, which is an essential element to
understand. The other two questions ask students to run a code
to teach them how to initialise and change the state of a
variable. The first two questions on operator precedence give
learners expressions formed by operands and operators with a
list of answers and the player has to choose the correct answer.
The other questions give the player expressions and ask them
to evaluate them. The generation of expressions is random in
order to give the player the possibility of repeating the game
several times.

The game took place over 8 two-hour sessions. In the first
session, the learners completed a pre-test, then we presented
them the game. We observed that the learners were very
motivated and worked together to solve the puzzles. During
the last session, the learners completed the post-test. In the
other sessions, players played the game.

Evaluation took place before, during and after the game.
Semi-structured interviews, observations and tests were used.
In the game, the students were highly motivated and focused.
In this work, we present the results of two tests that examine
learners performance.

V. DISCUSSIONS

The purpose of this research is to Closely scrutinise the
effect of using the "AppProg game" to teach variables and
operators priority rules in an introductory programming
course for secondary school students. In the remainder of this
paragraph, we consider that CA is a correct answer, [A an
incorrect answer, G1 is group 1 and G2 group 2.

Table 1 shows learners' post-test and pre-test results. The
results of the pre-test carried out before the game shows that
the correct answers of the two groups were almost similar,
reaching 51.28% in the first group (G1) and 52.56% in the
second (G2). This can be explained by the fact that both
groups were made up of learners with heterogeneous
programming levels.

The post-test results show that the percentage of correct
answers in the first group was 92.05% with an increase of
40.77%. In the second group, results rose from 52.56% in the
pre-test to 67.18% in the post-test, an increase of 14.62%.

The results of both tests showed that the group that played
the game performed better than the other group. The increase
in their results was almost three times greater than that of the
second group.

TABLE L PERCENTAGES OF THE ANSWERS OF THE TWO GROUPS IN

THE POST AND PRE TEST.BLE TYPE STYLES

Pre-test Post-test
Percentag | Percentage Percentage Percentage
eof CA of IA of CA of I4
Gl 51.28% 48.72% 92.05% 7.95%
G2 52.56% 47.44% 67.18% 32.82%

We also studied the results of the two groups for each
concept in Table 2.

Regarding variables, in the first group, correct answers
rose from 49.35% in the pre-test to 92.30 in the post-test, an
increase of 42.95%, while in the second group, correct
answers rose from 49.35% in the pre-test to 69.87% in the
post-test with an increase of 20.52%. The progression in
results for learners in Group 1 is more than double that of
Group 2 for this concept.

For the operator priority rules, the correct answers of
Group 1 students rose from 52.56% in the pre-test to 91.88%
in the post-test, an increase of 39.32%, while the correct
answers of the second group rose from 54.70% in the pre-test
to 65.38% in the post-test, an increase of 10.68%. Group 1
learners achieved more than three and a half times as much
progress as Group 2 for this concept.

These results show that the learners in Group 1 assimilated
both concepts better than their colleagues in Group 2.
Consequently, we can say that the use of the game
significantly helped learners in their learning of these
concepts.

TABLE II RESULTS OF THE TWO GROUPS IN THE TWO TESTS FOR
EACH CONCEPT
Pre-test Post-test
Gl1 G2 G1 G2

CA|IA|CA|IA|CA|IA|CA|IA

Q1|20 |19)18 |21 |35 |4 |26 |13

Questions on the concept Q2122 | 17123 | 1632 |7 |27 |12

of variable Q316 [23 |20 [19]34 |5 |25 |14

Q4119 12018 |21 |30 |9 |24 |15

Q1125 |14 23 |16 |35 |4 |30 |9

Q2120 1921 [18]30 |9 |27 |12

Questions relating to the Q326 | 13128 | 1133 |6 120 |19

priority of operators Q421 |19]19 20|34 |5 |25 14

Q5|15 12428 [11]31 |8 |23 |16

Q6116 |23 |16 |23 |29 [10(|20 |19

We also looked at the distribution of post-test scores
between the two groups, as shown in Table 3. In group 1, the
number of students who obtained a score higher than 16 was
five times higher than in group 2. In group 2, the percentage
of students who obtained a score lower than 10 was 23.07%
more than twice that of group 1, which was 10.25%. These
results show that the integration of serious games not only

enabled learners to better assimilate the two concepts covered,
but also to achieve good results.

TABLE III. NUMBERS AND PERCENTAGES OF STUDENTS IN THE
TWO GROUPS ACCORDING TO THEIR POST-TEST SCORES
Marks Marks
Marks <10 between 10 between 14 Marks>16
and 13,99 and 16,99
IIZZ Percent | Num | Percent | Num | Percent | Num | Percent
or ages ber ages ber ages ber ages
Gl |4 10.25% | 6 15% 14 36% 15 38,46%
G2 |9 23.07% | 20 51.28% |7 17,94% | 3 8%

VI. CONCLUSION AND PERSPECTIVES

This article presents the design, development and
evaluation of the "AppProg game" dedicated to learning
variables and operator priority rules in computer
programming. Analysis of the pre- and post-test results shows
that the game helped learners to assimilate these concepts.
This work is of interest to computer science teachers,
educational engineers and computer science professors,
particularly in secondary schools. It has limitations, such as
the game's failure to take account of learners' characteristics
and the lack of support for learners in difficulty, which can
reduce their motivation. This is why, in future research, we
plan to develop and evaluate an adaptive serious game for
learning programming that adapts to players' levels and offers
them support.

REFERENCES

[1] E. Lahtinen, K. Ala-Mutka, et H.-M. Jérvinen, « A study of the
difficulties of novice programmers », Acm sigcse bulletin, vol. 37, n°
3, p. 14-18, 2005.

[2] C. Watson et F. W. B. Li, « Failure rates in introductory
programming revisited », in Proceedings of the 2014 conference on
Innovation & technology in computer science education - ITiCSE
’14, Uppsala, Sweden: ACM Press, 2014, p. 39-44. doi:
10.1145/2591708.2591749.

[3] J. Kaasboll, « Learning Programming », University of Oslo, 2002.

[4] A. Luxton-Reilly et al., « Introductory programming: a systematic
literature review », in Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and Technology in Computer
Science Education, 2018, p. 55-106.

[5] L. Sauvé, L. Renaud, et M. Gauvin, « Une analyse des écrits sur les
impacts du jeu sur ’apprentissage », Revue des sciences de
I’éducation, vol. 33,n° 1, p. 89-107, 2007.

[6] D. Hooshyar, M. Yousefi, M. Wang, et H. Lim, « A data-driven
procedural-content-generation approach for educational games »,
Journal of Computer Assisted Learning, vol. 34, n° 6, p. 731-739,
2018.

[7] S. A. Houssein et Y. Peter, « Outils d’assistance et les difficultés
d’enseignement / apprentissage de la programmation, quelle aide ? »,
p. 8,2017.

[8] A. Gomes et A. J. Mendes, « Learning to program-difficulties and
solutions », in International Conference on Engineering Education—
ICEE, 2007.

[9] F. Hermans, A. Swidan, E. Aivaloglou, et M. Smit, « Thinking out
of the box: comparing metaphors for variables in programming
education », in Proceedings of the 13th Workshop in Primary and
Secondary Computing Education, Potsdam Germany: ACM, oct.
2018, p. 1-8. doi: 10.1145/3265757.3265765.

[10] T.Kohn, « Variable Evaluation: an Exploration of Novice
Programmers’ Understanding and Common Misconceptions », in

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, Seattle Washington USA: ACM, mars
2017, p. 345-350. doi: 10.1145/3017680.3017724.

A. Robins, J. Rountree, et N. Rountree, « Learning and teaching
programming: A review and discussion », Computer science
education, vol. 13,n° 2, p. 137-172, 2003.

Y. Qian et J. Lehman, « Students’ misconceptions and other
difficulties in introductory programming: A literature review »,
ACM Transactions on Computing Education (TOCE), vol. 18,n° 1,
p. 1-24,2017.

A. R. M. Gobil, Z. Shukor, et I. A. Mohtar, « Novice difficulties in
selection structure », in 2009 International Conference on Electrical
Engineering and Informatics, IEEE, 2009, p. 351-356. Consulté le: 5
décembre 2023. [En ligne]. Disponible sur:
https://ieeexplore.ieee.org/abstract/document/5254715/

E. Avidan et D. G. Feitelson, « Effects of variable names on
comprehension: An empirical study », in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC),
IEEE, 2017, p. 55-65. Consulté le: 5 décembre 2023. [En ligne].
Disponible sur:
https://ieeexplore.ieee.org/abstract/document/7961504/

J. Sajaniemi et R. Navarro-Prieto, « Roles of Variables in Experts’
Programming Knowledge. », in PPIG, Citeseer, 2005, p. 13.

J. Sajaniemi, « Guest Editor’s Introduction: Psychology of
Programming: Looking into Programmers Heads », Human
technology: an Interdisciplinary Journal on humans in ICT
environments, 2008.

C. S. Cheah, « Factors contributing to the difficulties in teaching and
learning of computer programming: A literature review »,
Contemporary Educational Technology, vol. 12,1n° 2, p. ep272,
2020.

M. A. Miljanovic et J. S. Bradbury, « Robot on! A serious game for
improving programming comprehension », in Proceedings of the 5th
International Workshop on Games and Software Engineering, 2016,
p. 33-36.

N. Tillmann, J. Bishop, N. Horspool, D. Perelman, et T. Xie, « Code
hunt: searching for secret code for fun », in Proceedings of the 7th
International workshop on search-based software testing, 2014, p.
23-26.

M. A. Miljanovic et J. S. Bradbury, « Robobug: a serious game for
learning debugging techniques », in Proceedings of the 2017 acm
conference on international computing education research, 2017, p.
93-100.

« CodeCombat - Coding games to learn Python and JavaScript ».
Consulté le: 8 décembre 2022. [En ligne]. Disponible sur:
https://codecombat.com/

L. Paliokas, C. Arapidis, et M. Mpimpitsos, « Game based early
programming education: the more you play, the more you learn »,
Transactions on Edutainment IX, p. 115-131, 2013.

M. J. Lee, « Gidget: An online debugging game for learning and
engagement in computing education », in 2014 ieee symposium on
visual languages and human-centric computing (vi/hcc), IEEE,
2014, p. 193-194.

N. Adamo-Villani, T. Haley-Hermiz, et R. Cutler, « Using a serious
game approach to teach’operator precedence’to introductory
programming students », in 2013 17th International Conference on
Information Visualisation, IEEE, 2013, p. 523-526.

S. Grover, R. Pea, et S. Cooper, « Factors influencing computer
science learning in middle school », in Proceedings of the 47th ACM
technical symposium on computing science education, 2016, p.
552-557.

E. Greff, « COMMENT PEUT-ON ABORDER LES PROBLEMES
DE PROGRAMMATION DANS LA NOUVELLE OPTION
INFORMATIQUE DE SECONDE. ».

J.-B. Lagrange et J. Rogalski, « Savoirs, concepts et situations dans
les premiers apprentissages en programmation et en algorithmique »,
Annales de Didactique et de Sciences Cognitives. Revue
internationale de didactique des mathématiques, n° 22, p. 119-158,
2017.

D. Djaouti, « Serious Game Design: considérations théoriques et
techniques sur la création de jeux vidéo a vocation utilitaire », PhD
Thesis, Université de Toulouse, Université Toulouse ITI-Paul
Sabatier, 2011.

[29] S. Egenfeldt-Nielsen, « Overview of research on the educational use
of video games », Nordic Journal of Digital Literacy, vol. 1, n° 3, p.
184-214, 2006.

