
Recommending Multidimensional Spatio-Temporal
OLAP Queries

1st Olfa Layouni
BESTMOD Laboratory,

Université de Tunis,
Institut Supérieur de Gestion de Tunis,

Tunisia
layouni.olfa89@gmail.com

2nd Jalel Akaichi
College of Computer Science,

King Khalid University,
Abha, Saudi Arabia.

jalel.akaichi@kku.edu.sa

Abstract—Spatio-Temporal data warehouses store enormous
amount of data. They are usually exploited by Spatio-Temporal
OLAP systems to analyze and visualize data in order to extract
relevant information. For extracting interesting information by
exploiting spatio-temporal data warehouses, the current user
launches Spatio-Temporal OLAP (ST-OLAP) queries to navigate
within a geographic data cube (Geo-cube). Very often choosing
which part of the Geo-cube to navigate further, and thus
designing the forthcoming ST-OLAP query, is a difficult task.
However, the problem of recommending ST-OLAP queries by
exploiting a Geo-cube has not been studied so far. Therefore, we
aim at filling this gap. In this paper, we propose an intensional
and a collaborative approach for recommending Spatio-Temporal
OLAP queries, expressed with the GeoMDX query language. It
aims to help users in the process of exploiting spatio-temporal
data warehouses by recommending ST-OLAP queries.

Index Terms—Spatio-temporal data warehouse, ST-OLAP
Query, GeoMDX, Intensional, Recommendation.

I. INTRODUCTION

Spatio-Temporal data warehouse become an active research
area. This is due to the explosive growth in the use of
devices based on recent ubiquitous location technologies [1]
such as GPS, smart phones, PDA, etc. The concept of a
spatio-temporal data warehouse appeared in order to store
moving data objects and temporal data information. Moving
objects are geometries that change their position and shape
continuously over time; the time could be an instant or a set
of time intervals. In order to support spatio-temporal data,
a data model and associated query language are needed for
supporting moving objects.

Spatio-Temporal data warehouse stores large volumes of
consolidation and historized multidimensional data, to be
explored and analyzed by various users in order to make the
best decision. To analyze and explore spatio-temporal data, a
user needs a Spatio-Temporal OnLine Analytical Processing
(ST-OLAP) system. To navigate in the spatio-temporal data
cube (Geo-cube), the current user launches a sequence of ST-
OLAP queries over a spatio-temporal data warehouse. Those
queries are expressed with the GeoMDX [2] query language,
in order to take into account spatial relationships: topological,
direction, and metric distance relationships and temporal data.

Users interactively navigate a spatio-temporal data cube
by launching sequences of ST-OLAP queries over a spatio-

temporal data warehouse. The problem appeared when the cur-
rent user may have no idea of what the forthcoming ST-OLAP
queries should be and if it is relevant for him or not. As a
solution and to help him in his navigation and his exploration,
we propose an intensional and a collaborative recommendation
system based on a query expression; expressed only with the
GeoMDX query language. This system gives the possibility to
recommend a ranking set of candidates for ST-OLAP queries.

This paper is organized as follows. Section 2 introduces
backgrounds about the evolution from data warehouses to
spatio-temporal data warehouses and the evolution from MDX
to GeoMDX query languages. Section 3 introduces related
works for recommending queries based on the query expres-
sion. Section 4 enlightens our approach for recommending
ST-OLAP queries. Section 5 presents the set of experiments
conducted to test the efficiency and the effectiveness of our
proposal. We conclude and discuss future works in Section 6.

II. RELATED WORKS: INTENSIONAL QUERY
RECOMMENDATIONS APPROACHES

We presented the principals works proposed for recom-
mending queries based on the exploration of a data cube and
which are established by using the intension based approaches;
based on the query expression. Indeed, this presentation allows
as identifying the gaps of ST-OLAP queries recommendation
system; in order to help the user in his exploration of Geo-
cube. To the best of our knowledge, this is the first work
dealing with the problem of recommending ST-OLAP queries
(especially GeoMDX queries [2]). We present various ap-
proaches to recommend OLAP and Spatial OLAP (SOLAP)
queries, expressed with MDX and Spatial MDX [3] languages.

The first proposed approach for recommending multidimen-
sional OLAP queries expressed with MDX was proposed by
[4]. The proposed approach exploits the log file which contains
all the previous OLAP queries lunched in the data cube. It’s a
collaborative approach. The proposed approach computes a set
of candidates’ sessions and/or queries. Then, it recommends
an order set of MDX queries for the current user. Adding to
that, in the literature, we find that the proposed approach by
[5], [6] exploits the profile. The proposed approach is based
on the profile of the current user. This approach recommends
a set of MDX queries after comparing between queries by



using a graphic model. This approach is a content based
approach. Besides, the work proposed by [7] recommends
OLAP sessions. It’s a collaborative filtering context, and
based on similarity measures between queries and sessions,
expressed with MDX. Three phases compose this approach.
The first phase aligns the log sessions with the current session,
based on a modified version of Sequence Alignment. The
second phase ranks each future by identifying densest areas
of similar queries in the log sessions. The last phase adapts
the future ranked first by modifying or adding fragments in
its queries, using patterns extracted from the log and the
current session, and recommends it. While recommendation
has been widely explored in the context of OLAP systems, to
the best of our knowledge, there is only the works proposed by
[8], [9] developed recommendation approaches in the field of
Spatial OLAP systems. Those approaches recommend SOLAP
queries, expressed only with the Spatial MDX language, for
supporting spatial data warehouse exploration. The proposed
approach by [9] recommends a set of SOLAP queries but this
approach doesn’t take into account the specific characteristics
of spatial data: topological, metric distance and direction
relationships. The proposed approach is based on the query
expression. To recommend a set of queries, it computes the
distances between SOLAP queries by using the distance of
Levenshtein [10] and the method of TF-IDF [11] in order to
evaluate the importance of terms. However, the work proposed
by [8] recommends only fives queries for the user after
comparing between queries by applying a spatio-semantic
similarity measure. This approach takes into account the
specific characteristics of spatial data. However, the proposed
approach for recommending Spatial OLAP queries has some
disadvantages, the proposed algorithm eliminates all the old
queries in the log and it takes into account only recent
queries in the log.Table I reports a comparison of the above
approaches.

III. INTENSIONAL ST-OLAP QUERIES
RECOMMENDATION APPROACH

To help the user to go forward in his exploration of the
geographic data cube, we propose an intensional and a collab-
orative approach for recommending a set of candidates of ST-
OLAP queries; expressed especially with the GeoMDX query
language. It uses both the sequences of ST-OLAP queries
of the current session which are formerly launched on the
Geo-cube and the historical of lunched sessions of ST-OLAP
queries stored in the log. We introduce in this section the
ST-OLAPQReco system, and more specifically the different
phases to recommend a set of ST-OLAP queries for the
current user. Figure 1 depicts the principle of ST-OLAPQReco
system. A user conducts a ST-OLAP session for which ST-
OLAPQReco will recommend an order set of candidates of ST-
OLAP queries leveraging former sessions devised by previous
users, saved in the log.

The ST-OLAPQReco system is organized in two phases:

1) A Pre-Processing phase allows partitioning the query log
in order to compute all the generalized sessions of the
log.

2) A Filtering phase allows predicting an ordering set of
candidates ST-OLAP queries.

Fig. 1. Principal of ST-OLAPQReco.

The overall sequencing of the system are Pre-Processing
and Filtering functions. The first step in this algorithm is to
pre-process sessions of ST-OLAP queries saved in the log,
to obtain a generalized log. The second step uses the result
obtained in the first step to search the most similar sessions
to the generalized current session. Then, with the similar
sessions, we search the set of candidates ST-OLAP queries.
The results obtained in this step can be a set of candidates
ST-OLAP queries or an empty set. If we obtain an empty set,
the recommendation of queries is done by the default function
and if we obtain a set of candidates ST-OLAP queries, we
sort this set in the order of the most similar to the query that
represents the current session.

A. Pre-Processing Phase

Several users explore the geo-cube by launching sequences
of ST-OLAP queries according to their intentions. These ST-
OLAP queries are stored in the log file. However, the log
contains all the previous ST-OLAP queries already launched
in the geo-cube. It can be very large and voluminous because
of the high number of queries and users. Therefore, we
propose this phase in order to resolve this problem also the
problem of the low density of the log. The main of this phase
consists in partitioning the log of sessions of ST-OLAP queries
Geo session(ST C). In order to analyze the log file that
contains a huge volumes of information such as user identi-
fication, number of queries, queries launched in each session,
time of begin and end of each query execution time, set of
queries launched by each user, errors, etc. We choose to user
STARK framework 1 for analyzing and pre-processing the log
file. STARK is an enhancement of SPARK 2 to support spatio-
temporal data types. So, it takes into consideration data for
record location or movement of user or object that periodically
announce their current position. STARK framework includes
spatial partitions, different mode for indexing as well as filter

1https://github.com/dbis-ilm/stark
2https://spark.apache.org/



TABLE I
COMPARING THE INTENSIONAL QUERY RECOMMENDATIONS APPROACHES BASED ON MDX AND SPATIAL MDX QUERY LANGUAGES.

Proposed methodProposed by [4] [5], [6] [7] [9] [8]
Data Warehouse * * *
Spatial Data Warehouse * *
Data Cube OLAP * * *

SOLAP * *
Query
Language

MDX * * *

Spatial MDX * *
Input of the
recommending
approach

Log File * * * *

Profile *
Results of the
recommending
approach

Query * *

Set of queries * * * *
Set of sessions *

Content-based method *
Collaborative method * * * *

and join; k-nearest neighbor search and density clustering
operators for data analysis [12]–[14]. By using STARK our
log file will be more comprehensible for using in the next
step in the pre-processing phase by accelerate the processing
of data queries. He processes the log file and keeps track on
session accessed by users after launching a set of queries in
ST-OLAP server. The mainly step in STARK for our approach
is data cleaning the entries that have status of ‘error’ or
‘failed’ have been removed. It consists of a minimization of
the volumes of the log file by removing redundancy queries
and sessions. In order to obtain a generalized log, we need
especially the output of the log file after using STARK
contains all the previous sessions of ST-OLAP queries and
the schema of the spatio-temporal data warehouse. The first
step is to extract the set of dimensions STDim and the
set measure SM cube from the schema of spatio-temporal
data warehouse by using the of TF-IDF (Term Frequency-
Inverse Document Frequency) for evaluating the importance
of terms [11] like measures SM cube, classical dimensions
Dim, spatial dimensions SDim and temporal dimensions
TDim. In this step, the Term Frequency-Inverse Document
Frequency (TF-IDF) assigns a score to each term in the schema
depending on not only the term’s frequency in the document
but also the term’s value according to its appearance in the rest
of the schema. After that, we need to extract spatial calculated
measure in each query SMq by using the TF-IDF method but
by replacing the schema by a query, in this case we calculate
the score of each term in a query. So after that, we obtain
a set of dimensions STDim = SDim+ TDim+Dim and
a set of measures SM = SM cube+ SMqia + SMqib. In
order to determine the partitioning, we need to group similar
queries in a class which represents a set of similar ST-
OLAP queries. So, we propose to use the similarity measure
distance proposed in the [15] for computing the distances
between ST-OLAP queries (GeoMDX queries). This similarity

measure of Spatio-Temporal OLAP queries takes into account
not only the spatial data with specific characteristics such as
topological, orientation and distance, but also the temporal
data. In order to compare similarity of ST-OLAP queries,
the authors proposed three new similarity measures: spatial
similarity measure to compute spatial distance between ST-
OLAP queries, temporal similarity measure to compute tem-
poral distance between ST-OLAP queries, and spatio-temporal
similarity measure to compute spatio-temporal aspects of the
ST-OLAP queries. Furthermore, the spatio-temporal similarity
measure is a combination of three components: one related to
measure sets, one to the set selection and one to where set. The
next step is the segmentation of ST-OLAP queries in order to
obtained generalized log, we choose the implementation of the
k-means algorithm for its simplicity and low computational
cost compared with other clustering algorithms [16]–[18].
Besides, it’s the most used in recommendation systems. In this
step, the user should choose the numbers of initials clusters
k, and for storing the distance results, we proposed to use
the symmetric matrix Matrix[a, b] that contains the results
obtained of the similarity measure distance between queries.
The result obtained, after this step, represents that each query
should be belongs to a cluster of set of ST-OLAP queries.
After that, we compute the set of the generalized sessions for
obtained the generalized log. For each session in the log, we
replace each ST-OLAP query in a session with the cluster
which it belongs to.
The Algorithm 1 sketches the overall sequencing of this phase.

B. Filtering Phase

The filtering phase consists on recommending to the current
user a ranking set of candidates ST-OLAP queries. This phase
use the results obtained in the previous phase. The previous
phase has compute the set of generalized sessions of ST-OLAP
queries. By using this set and the current session of ST-OLAP



Algorithm 1 Pre-Processing Algorithm
Require: ℓ: The log of sessions of ST-OLAP queries.

Schema.xml: The geo-cube schema.
Ensure: Generalized set of sessions of ST-OLAP queries.
1: Dim = Extract DimGeoCube(Schema.xml)
2: SDim = Extract SpatialDimGeoCube(Schema.xml)
3: TDim = Extract TemporalDimGeoCube(Schema.xml)
4: STDim = SDim + TDim + Dim;
5: SM cube = Extract Measures(Schema.xml)
6: For All qia ∈ Geo q (Si) ∈ ℓ DO
7: SMqia = Extract SCMeasures(qia)
8: For All qib ∈ Geo q (Si) ∈ ℓ DO
9: SMqib = Extract SCMeasures(qib)

10: SM = SM cube + SMqia + SMqib
11: If a = b then
12: Matrix[a, b] = 0
13: else
14: Distance = STDQueries(qia, qib, STDim, SM)
15: Matrix[a, b] = Distance
16: Matrix[a, b] = Distance
17: End If
18: End For
19: End For
20: For All qia ∈ Geo q (Si) ∈ ℓ DO
21: For All qib ∈ Geo q (Si) ∈ ℓ DO
22: K Means(Matrix[a, b])
23: End For
24: End For
25: For All qij ∈ Geo q (Si) ∈ ℓ DO
26: Generalizedℓ = PreProcess Log(qij , Generalized Session(qij))
27: End For

queries launched by the current user in the geo-cube, a set of
candidates of ST-OLAP queries is computed by applying the
algorithm 2. The Algorithm 2 sketches the overall sequencing
of this phase. First, we propose to do the generalized current
session. Then, the algorithm uses three functions: Similarity,
Prediction and Ranking. The Similarity function is used to find
a set of candidates of generalized sessions corresponding for
each cluster in the generalized current session. The Prediction
function is used to find a set of candidates of ST-OLAP
queries that are relevant for the current user and which will
be recommended to him. The Ranking function aims to order
the set of candidates of ST-OLAP queries according to the
preference of the current user.

Algorithm 2 Filtering Algorithm
Require: Generalizedℓ: The generalized log.

Geo q (Sc): The current session.
Ensure: A set of candidates ST-OLAP queries.
1: PSc = Pre− Processing(Geo q (Sc))
2: Candidates Sessions = Similarity(PSc, Generalized Log)
3: Set Candidates ST −OLAP Queries = ∅
4: If Candidates Sessions ≠ ∅ then
5: For each sessions Si ∈ Candidates Sessions DO
6: Set Candidates ST − OLAP Queries = Set Candidates ST −

OLAP Queries ∪ Prediction(Si);
7: End For
8: Ranking(Set Candidates ST −OLAP Queries)
9: End If

10: return (Set Candidates ST −OLAP Queries);

1) Similarity Function: In the similarity function, we pro-
pose to use the generalized current session and the generalized
sessions of ST-OLAP queries stored in the log file. The
Algorithm 3 describes all the instructions used in this function.
For each cluster in the generalized current session, we propose
to compute the number of occurrence for the corresponding
cluster in each generalized session. The result obtained will be

stored in a matrix with the number of clusters in the current
session with the number of generalized sessions as parameters;
and a cell in the matrix contains the number of occurrences.
According to the obtained matrix, in each row of cluster, we
propose to search for the generalized session that have the
biggest number of occurrence of the corresponding cluster and
to affect it to the set of candidates of generalized sessions.

Algorithm 3 Similarity Generalized Session Algorithm
Require: Generalizedℓ: The generalized log.

PSc: The generalized current session.
Ensure: A set of candidates of generalized session corresponding for clusters in the

generalized current session.
1: For All C[i] ∈ PSc DO
2: nb similar Cluster = 0
3: For All Generalized session[k] ∈ Generalizedℓ DO
4: If C[i] equals to C[j] ∈ Generalized session[k] then
5: nb similar Cluster + +
6: End If
7: End For
8: Matrix[C[i], Generalized session[k]] = nb similar Cluster
9: End For

10: For All C[i] ∈ PSc DO
11: k=1
12: For All Generalized session[x = k + 1] ∈ Generalizedℓ DO
13: If Matrix[C[i], Generalized session[k]] =

Matrix[C[i], Generalized session[x]] then
14: Reco Generalized Session = {Generalized session[x], C[i]}
15: End If
16: End For
17: End For

2) Prediction Function: The aim of the prediction function
is to obtain a set of candidates ST-OLAP queries. The Algo-
rithm 4 shows all the instructions used in this function.The
algorithm use the set of candidates generalized sessions ob-
tained by the Similarity function and the generalized current
session. For each cluster in the generalized current session
and for each candidates generalized sessions, we propose to
replace each cluster with the corresponding query that is in
the initial session in the log.

Algorithm 4 Prediction Algorithm
Require: Reco Generalized Session: A set of candidates of generalized session

corresponding for each clusters in the generalized current session.
PSc: The generalized current session.

Ensure: A set of candidates of ST-OLAP queries.
1: For All C[i] ∈ PSc DO
2: For All Reco Generalized Session DO
3: Reco Set Querie [C[i]{qaj}] =

Reco Generalized Session[C[i]{qaj}]
4: End For
5: End For

3) Ranking Phase: The obtained results represent a set
of candidates ST-OLAP queries. The aim of this step is to
order this set according to the queries in the current session.
The Algorithm 5 describes all the instructions used in this
step. First, we propose to compute the similarity measure
between ST-OLAP queries in the current session with the set
of candidates ST-OLAP queries. Then, we propose to rank the
set of candidates ST-OLAP queries according to the similarity
measure results by applying the Quick Sort methods because
it has the fast average run time and have the best complicity
by applying it in our case, it is equals to O(nLogn) [19] with
n represents the number of candidates ST-OLAP queries.



Algorithm 5 Ranking Algorithm
Require: STDim: Spatio-Temporal dimensions.

SM : Measures from the Geo-cube.
Reco Set Queries C[i]: A set of candidates of ST-OLAP queries.
Geo q (Sc): The current session.

Ensure: A ranking set of candidates of ST-OLAP queries.
1: For All qcj ∈ Geo q (Sc) DO
2: k = 1
3: For All qij ∈ Reco Set Queries C[i] DO
4: Tab[k] = Spatio Temporal Distance Queries(qcj , qij , STDim, SM)
5: k + +
6: End For
7: End For
8: quicksort(Tab, 0, nb Candidates Queries− 1)
9: For All i = 1 to Size Table(Tab) DO

10: Reco ST −OLAP Queries←− Tab[i]
11: End For

IV. EXPERIMENTATIONS

In this section, we present the results of experiments that
we have conducted in order to assess the capabilities of our
proposal. First, we introduce the prototype ST-OLAPQReco
system that implements the recommendation approach. Sec-
ond, we present the set of experiments and their analysis.

A. Architecture of ST-OLAPQReco System

We present the architecture and the dataset used to evaluate
and compare the prediction performance of the proposed rec-
ommender systems. The ST-OLAPQReco system implements
all phases of the proposed approach to provide user with useful
and relevant GeoMDX queries. First, to navigate in the geo-
cube, the current user launch a sequence of ST-OLAP queries
by using the ST-OLAP server GeoMondrian over a spatio-
temporal data warehouse stored in the PostgreSQL integrating
PostGIS in order to take into account spatial and temporal
data types. All the previous sessions of GeoMDX queries are
stored in the log file. Finally, our system recommends an order
set of GeoMDX queries to the current user. The architecture
of the system is presented in the figure 2.

Fig. 2. The architecture of the ST-OLAPQReco system.

B. Data Set: NYC Taxi Trip Data

To realize our system, we need a log file contains the
previous sessions of ST-OLAP queries launched by users in
the ST-OLAP server. First, we need to connect between the
GeoMondrian Server and the spatio-temporal data warehouse
”NYC Taxi Trip Data”. We use a real data set for taxi trips
in New York city records from a freely available dataset.

The official TLC trip 3 record data set contains data for over
1.1 billion taxi trips from January 2009 through June 2015,
covering both yellow and green taxis. Each individual trip
record contains precise location coordinates for where the trip
started and ended (latitude and longitudes), timestamps for
when the trip started and ended, plus a few other variables
for detailing the trip such as fare amount, payment method,
distance traveled, number of passengers and various taxes. For
privacy and security reasons, it doesn’t contain details about
drivers or passengers.

We used PostgreSQL to store the data and PostGIS to
perform geographic calculations, including the heavy lifting
of mapping latitude/longitude coordinates to NYC taxi trip
data. For more detailed information on the database schema
and geographic calculations, we used the steps described at
the GitHub repository 4.

C. Performance analysis

Our experiment evaluates the efficiency of our approach
proposed to recommend ST-OLAP queries. The efficiency
of our system assesses the time taken to generate the best
recommendation for various log sizes. It’s important because
ST-OLAP queries should be resolved in a short time to enable
an interactive analysis.

The performance is presented in Figure 3 according to
various log sizes. These log sizes are obtained by playing
with two different parameters that change over the time: the
number of sessions store in the log, it ranges from 10 to
100; and the maximum number of queries that could be
launched for per session, it ranges from 3 to 20. We thus
obtain logs of size varying between 3 and 2000 queries. Note
that what is measured is the execution time taken by the steps
proposed: pre-processing the log, generating candidates ST-
OLAP queries and ordering the candidates ST-OLAP queries.
The goal of our experimentation is to measure the execution
time taken by applying our proposed approach.

Fig. 3. Performance analysis: Average computation time for obtaining a
recommendation.

Figure 3 shows the evolution of the average computation
time to obtain recommendation with ST-OLAPQReco system.
The goal of our experimentation is to measure the exe-
cution time taken by applying our proposed approach. So,
we conclude that the time taken to recommend ST-OLAP

3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
4https://github.com/toddwschneider/nyc-taxi-data



queries increases linearly with the log size but remains highly
acceptable and is slightly influenced by the current session
size as shown in Figure 3. As can be seen from Figure 3, it is
obvious that the trend of execution time is upwards with the
log size. The time taking for computing a recommendation is
less than 1s for 25% of the log size and more than 3s for the
complete log size.

As there is no approach for ST-OLAP queries recommenda-
tion system, we compare the performance of our system with
related works in Spatial OLAP (SOLAP) queries recommen-
dation systems. We notice that SOLAP systems may appear
more performed than our ST-OLAP recommendation system.
We should notice here that for ST-OLAP queries recommen-
dation time is expected to be longer than one for SOLAP
queries recommendation system. Since, our system handles
not only spatial data with specific relationships: topological,
direction and metric distance relationship; but also temporal
data: movement data types.

V. CONCLUSIONS

In this paper, we have proposed a collaborative and inten-
sional approach for recommending Spatio-Temporal OLAP
queries with queries expressed only with GeoMDX query
language; in order to help the current user in his exploration of
the spatio-temporal data cube (Geo-cube). For that purpose, we
have suggested an approach for generating recommendations
of ST-OLAP queries to the current user. Our approach was
organized in three different phases: A Pre-Processing the set
of session in the log, Generalization of the candidate ST-
OLAP queries and Ordering the candidates ST-OLAP queries.
Then, we have developed our system ST-OLAPQReco by
implementing all the phases of our proposed approach in order
to recommend relevant ST-OLAP queries to the user. Adding
to that, to validate our approach, we evaluated the efficiency
and the effectiveness of our approach proposed to recommend
ST-OLAP queries. To the best of our knowledge, our proposal
is the first work proposing a Spatio-Temporal OLAP queries
(GeoMDX queries) recommendation system.

REFERENCES

[1] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and
Implementation. Heidelberg: Springer, 2014.

[2] M. Tranchant, “Capacités des outils solap en termes de requêtes
spatiales, temporelles et spatio-temporelles,” CONSERVATOIRE NA-
TIONAL DES ARTS ET METIERS CENTRE REGIONAL RHÔNE-
ALPES CENTRE D’ENSEIGNEMENT DE GRENOBLE, Tech. Rep.,
2011.

[3] T. Badard, “L’open source au service du géospatial et de l’intelligence
d’affaires,” Geomatics Sciences Department, avril 2011.

[4] E. Negre, “Exploration collaborative de cubes de données,” Ph.D.
dissertation, Université François Rabelais of Tours, France, 2009.

[5] L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi, and D. Laurent,
“A personalization framework for OLAP queries,” in DOLAP 2005,
ACM 8th International Workshop on Data Warehousing and OLAP,
Bremen, Germany, November 4-5, 2005, Proceedings, 2005, pp. 9–18.

[6] L. Bellatreche, H. Mouloudi, A. Giacometti, and P. Marcel, “Personaliza-
tion of MDX queries,” in 22èmes Journées Bases de Données Avancées,
BDA 2006, Lille, 17-20 octobre 2006, Actes (Informal Proceedings).,
2006.

[7] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia, “Simi-
larity measures for olap sessions,” Knowledge and Information Systems,
vol. 39, no. 2, pp. 463–489, 2014.

[8] S. Aissi, M. S. Gouider, T. Sboui, and L. B. Said, “A spatial data ware-
house recommendation approach: conceptual framework and experimen-
tal evaluation,” Human-centric Computing and Information Sciences,
vol. 5, no. 1, pp. 1–18, 2015.

[9] O. Layouni and J. Akaichi, “A novel approach for a collaborative
exploration of a spatial data cube,” IJCCE: International Journal of
Computer and Communication Engineering, vol. 3, no. 1, pp. 63–68,
Jan 2014.

[10] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[11] C. Brouard, “Comparaison du modèle vectoriel et de la pondération
tf*idf associée avec une méthode de propagation d’activation,” in
CORIA, Neuchâtel, France, Apr. 2013, pp. 1–10.

[12] S. Hagedorn, P. Gotze, and K.-U. Sattler, “The stark framework for
spatio-temporal data analytics on spark,” Datenbanksysteme für Busi-
ness, Technologie und Web (BTW 2017), 2017.

[13] S. Hagedorn, P. Götze, and K.-U. Sattler, “Big spatial data processing
frameworks: Feature and performance evaluation.” in EDBT, 2017, pp.
490–493.

[14] S. Hagedorn and T. Räth, “Efficient spatio-temporal event processing
with stark.” in EDBT, 2017, pp. 570–573.

[15] O. Layouni and J. Akaichi, “New similarity measure for spatio-temporal
OLAP queries,” in Beyond Databases, Architectures and Structures.
Advanced Technologies for Data Mining and Knowledge Discovery -
12th International Conference, BDAS 2016, Ustroń, Poland, May 31 -
June 3, 2016, 2016, pp. 328–337.

[16] J. Macqueen, “Some methods for classification and analysis of multi-
variate observations,” in In 5-th Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–297.

[17] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
1999.

[18] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus
interpretability of classifications,” Biometrics, vol. 21, pp. 768–769,
1965.

[19] R. Sedgewick, “Implementing quicksort programs,” Commun. ACM,
vol. 21, no. 10, pp. 847–857, Oct. 1978.


