
  

  

Abstract—This research investigates an inventory system 

employing a fixed-order quantity policy for managing a 

perishable product with deterministic shelf life over a finite 

planning horizon, assuming no replenishment during the sales 

period. The demand follows a non-homogeneous compound 

Poisson distribution, where the intensity exhibits dual 

dependence on both current inventory availability and an 

unspecified temporal weight function while controlled by retail 

price. Through the application of diffusion approximation of the 

inventory level and incorporating intensity-price dependence, 

we derive a practical approximation for the optimal weight 

function that remains computationally efficient even for 

substantial lot sizes. The case of leftovers’ salvage has been 

considered. For two types of near-optimal weight functions the 

expected revenues are obtained, and numerical examples of 

their maximization with respect to an unknown constant are 

presented. 

I. INTRODUCTION AND PROBLEM STATEMENT 

Contemporary e-commerce platforms demonstrate 

particular interest in dynamic pricing strategies, as 

technological advancements have virtually eliminated menu 

costs. This approach has gained significant traction in retail 

grocery sectors through expiration date-based pricing 

implementations; see [1]. 

Recent studies [2-3] have examined the ecological and 

societal consequences of managing perishable goods, 

highlighting how dynamic pricing affects both revenue 

generation and product waste reduction. Empirical evidence 

[4-5] further demonstrates that implementing dynamic 

pricing strategies in retail settings can substantially enhance 

profitability. Dynamic pricing practices are particularly 

useful when demand is both price sensitive and stochastic. 

The literature contains comprehensive reviews [6-11] 

documenting thorough investigations into production and 

inventory systems handling perishable goods. 

Here, we present a generalization of the retail price control 

models in stochastic environment proposed and studied in [12

–14]. These three papers deal with the products that need to 

be sold before a certain point in time. It is assumed that 

demand exhibits high price elasticity, demonstrating marked 
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responsiveness to pricing variations.  

In [12], a stochastic dynamic price control model is 

proposed, which allows us, triggering purchases, to sell all the 

perishable product at hand during the period almost surely. 

In this paper, we derive the equation for the optimal weight 

function, which maximizes the expected revenue, and 

consider its approximate solution as a near-optimal weight 

function. This near-optimal weight function almost surely 

implies leftovers depending on the range of the unknown 

constant it contains. Firstly, the core optimization objective 

focuses on expected revenue maximization through the 

constant considering nonzero salvage value. Secondly, we 

modify the optimal weight function approximation so that the 

price at the beginning of the sales period becomes close to the 

base price and obtain the expected revenues in case of 

possible leftovers. For both functions, the optimization task 

can be solved only numerically. The corresponding numerical 

examples are given. The sales process's stochastic properties 

and associated expected revenues are analytically derived via 

diffusion approximation of the inventory process. 

Let us introduce the model’s assumptions and notations. 

We consider a supply chain network comprising one vendor 

and multiple buyers, the vendor is a monopolist and seeks to 

maximize the revenue, ordering fixed lot 0Q  per unit price d 

and selling it within a fixed time period T. 

If leftovers happen, products are sold on the secondary 

market at salvage value per unit s, s < d, or are disposed, in 

this case, s < 0. 

The demand follows a compound Poisson process with 

price-dependent intensity ( )cλ , where ( )c c t=  denotes the 

unit selling price. Individual order quantities are modeled as 

i.i.d. continuous random variables with the first and second 

moments a1 and a2 respectively. The system operates under a 

no-replenishment policy throughout the planning horizon. 

As evidenced by the results presented in [15], we assume 

that the stock level process ( )Q ⋅  is characterized by a 

stochastic differential equation as follows: 
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( ) ( ( )) ( ( )) ( )dQ t a c t dt a c t dw t= − λ + λ , 

where ( )w ⋅  is the Wiener process. 

Let us consider the following model of the intensity of the 

customers’ flow control through the dynamic price: 

( )
( )1

( )
( )

/

Q t
a c t

T t T
λ =

ϕ
,       (1) 

where ( )ϕ ⋅  is an unknown weight function, [ ]0,t T∈ . We 

will call control model (1) as a general one. 

II. NEAR-OPTIMAL WEIGHT FUNCTION FOR A LARGE LOT 

SIZE 

A. Expectation and variance of the stock level process 

Thus, the stock level follows the stochastic differential 
equation: 
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2

1

( ) ( )
( ) ( )

/ /

aQ t Q t
dQ t dt dw t

T t T a T t T
= − +

ϕ ϕ
.   (2) 

The expectation and variance 
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B. The expected revenue and its maximization 

We adapt linear the intensity-of-price dependence 
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0
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c t c
c

c

−
λ = λ − λ         (5) 

where 0c  is a stationary (basic) price corresponding stationary 

intensity 0λ , and parameter 1 0λ >  quantifies the 

responsiveness of the demand intensity ( )λ ⋅  to deviations of 

the relative price from its stationary level. 

From (1) and (5) we get 
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The expected revenue over the cycle 
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Let us formulate the optimization problem 
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subject to (0) 0ψ = . 

Following Euler-Lagrange equation, optimal function 

( )ψ ⋅  satisfies 

2 21
( ) 0,

2
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    (6) 

where coefficient 1 0 2/ 1A a Q a= − . 

Coefficient 1A>> , because 0Q  is usually large, so 

neglecting the last term in (6), we get 
2 0′′ ′ψ −ψ = . It follows 

that near-optimal weight function ( )z C zϕ = − , where C is 

a constant. 

If C > 1, then the leftovers are possible. The expected stock 

level at the end of the period ( ) ( )0
1 1/ .Q T Q C= −  

Fig. 1 shows the plots of the optimal weight functions for 

different values of coefficients A and C > 1. Black lines 

represent the exact solutions, whereas red lines indicate the 

approximate solutions. For all C values and A = 100 the exact 

and approximate solutions are close to each other. The 

difference between the solutions increases by the end of the 

cycle. 

 
Figure 1. Optimal weight function ( )ϕ ⋅ dependence on t/T = z for the 

exact and approximate solutions. 

 



  

Consider the case of leftovers, that is, 1C > . Let the 

salvage value per unit s d=η , where coefficient 1 1− ≤ η ≤  

reflects the product’s deterioration throughout the period, like 

as in [16]. The expected salvage value 
0

1
s

C
S dQ

C

− 
= η  

 
. 

Then the expected revenue of general model for C > 1 
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III. LOT WEIGHTED CONTROL MODEL 

In this section, we examine the specified form of 
price-dependent intensity. 

( )1

( )
( ) ,

CQ t
a c t

CT t
λ =

−
        (8) 

where C > 0 is a constant, t < CT. We will refer to this model 
as a lot-weighted one. 

Then the stock level process is described by the following 
stochastic differential equation: 

2

1

( ) ( )
( ) ( ).

aCQ t CQ t
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CT t a CT t
= − +

− −
    (9) 

Below we consider probabilistic characteristics of the 
stock level process and give the expression of the expected 
revenue for C > 1. 

A.  Expectation and variance of the stock level process 

Expectation and variance of ( )Q t  
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Note that ( ){ } ( )0 1 1/
C

E Q T Q C= −  for 1.C ≥  

B. Probability density function of the stock level process 

Applying Itô’s lemma to equation (9) yields: 
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After averaging, we have 
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where ( ){ }( , ) exp ( )p t E pQ tΦ = − . 

From (10) we get 
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where ( )ϕ ⋅  is an unknown function and parameter 

1 22 /a aβ = . 

Using inverse Laplace transform we obtain the density 
function 
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where ( )1I ⋅  is the first order modified Bessel function of the 

first kind and ( )δ ⋅  represents the Dirac delta distribution. 

This result provides some other characteristics of the sales 
process. 

C. Distribution of the selling period’s duration 

Denote τ  the first occurrence time of the crossing of zero 

level by ( )Q ⋅  subject to ( ) 00Q Q= . That is, τ  denotes the 

duration required to complete the sale of lot 0Q . The 

cumulative distribution function of τ  is the multiplayer 

before ( )δ ⋅  function in (11). 

The cumulative distribution function of τ  is given by: 

0

( )
( ) ( ) exp .
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τ
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The expected duration of the selling period 
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where ( ),Γ ⋅ ⋅  is the upper incomplete gamma function. 



  

D. The expected revenue and its optimization 

Let us find the expected revenue for the lot-weighted 
model in case of a large lot size. 

Define 0c  the stationary (or basic) price that satisfies 

equation ( )1 0 0 /a c Q Tλ = . Represent the deviations from the 

stationary price by 
0

( ) ( )c t c t c∆ = − . 

Employing the Taylor series expansion, we derive 

( ) ( ) ( ) ( )1 1 0 1 0( ) ( ) / ( )a c t CQ t CT t a c a c c t′λ = − = λ + λ ∆ +K  
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If 1C > , the expected revenue for 
0 1Qβ >>  
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Using linear approximation (5) and substituting 

0 1 0/Q T a= λ , we can rewrite (13) as follows 
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Tending C to one from above we get the same result as in 
[12]. 

IV. NUMERICAL ILLUSTRATION 

The expected revenues (7) and (14) demonstrate concavity 
with respect to C. We use simulations to validate the general 
and lot-weighted models. The non-homogeneous Poisson 
process is generated via thinning method, with 1,000 
replications per configuration and simulation results are 
reported as means across iterations. Fig.2 illustrates that the 
theoretical weighted expected revenues align well with the 
simulation results across varying parameters. 

Under condition 
0 1 0Ta Qλ = , the relative revenues of the 

two models depend on three dimensionless system 

parameters: 0 1 0/ ,  Qλ λ β , and 
0

/d cη . Fig. 3 depicts the 

numerical results for relative revenues dependence on for 
general (black line) and lot-weighted (red line) models, 
distribution of purchases is uniform, 

0
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The results demonstrate that increasing 0 1/λ λ  and 0Qβ  

leads to significant revenue improvements and shifts in both 
revenues and coefficients C required to achieve revenues’ 
maximum, as shown in the first three subplots. Notably, the 
lot-weighted model exhibits greater robustness to C deviations, 
particularly for negative salvage values. 

 
Figure 2. Theoretical models verification. 



  

 
Figure 3. Relative revenues dependence on C. 

Let us now investigate the impact of three dimensionless 
system parameters on both the revenues and corresponding 
optimal coefficients C for the models. 

In Tab. 1 and Fig. 4, numerical results of the maximal 
relative revenues calculation for the general model and the 
lot-weighted one are presented under different sets of 
dimensionless system parameters. 

Both models attain similar peak revenues under baseline 

conditions ( 0 01050,  / 0.6Q d cβ = η = − ). The lot-weighted 

model outperforms the general one in two scenarios: (1) when 

the lot size is substantially increased ( 0 600Qβ > ), or (2) when 

utilization cost is high (implied by 0/ 0.6d cη = − ). 

Three-dimensional modeling demonstrates the advantages and 
disadvantages of the two models more effectively as shown in 
Fig. 5. 

Fig. 6 depicts the numerical results for optimal C values 
with respect to variations of three dimensionless system 
parameters. 

In contrast to parameters 0 1
/λ λ  and 

0/d cη , parameter 

0Qβ  exhibits an inverse influence on the two models — 

increasing 0Qβ  slightly reduces optimal C values for the 

general model, while increases the value for the lot-weighted 
model. The general model exhibits superior stability under 
large lot-size conditions. Specifically, maintaining the 
coefficient C slightly below 1.7 is sufficient to achieve 
near-optimal revenue. This contrasts with the lot-weighted 
model, which requires finer calibration of C to optimize the 
inventory system’s performance. 

TABLE I.  OPTIMAL RELATIVE REVENUES 

0 1
/λ λ  5 8 8 8 

0Qβ  750 750 1050 1050 

0/d cη  0.2 0.2 0.2 -0.6 

1_ 0 0/C generalS c Q>  1.88 2.61 2.62 2.28 

1_ 0 0/C lot weightedS c Q> −  1.87 2.51 2.56 2.35 

 

 
Figure 4. Optimal relative revenues dependence on 0 1 0 0/ ,  ,  /Q d cλ λ β η . 

 
Figure 5. Optimal relative revenues dependence on 0 0,  /Q d cβ η . 

 
Figure 6. opt

C  dependence on 0 1 0 0/ ,  ,  /Q d cλ λ β η . 



  

V. CONCLUSION 

For large lot sizes, we describe the stock level process 
driven by a compound Poisson demand with a customer flow 
intensity proportional to the stock level and a time-dependent 
weight function using a diffusion approximation. We get the 
near-optimal weight function for large lot sizes in closed form 
using a linear intensity-of-price dependence. This weight 
function depends on an unknown constant. The modified, 
lot-weighted function, also depending on a constant, is 
presented to ensure more stable operation of the inventory 
system. Optimization with respect to the constants under the 
salvage values consideration can be done only numerically, 
the revenues functions are concave. 

The numerical analysis demonstrates that while both 
models achieve comparable peak revenues under baseline 
conditions, their performance diverges under parameters 
variations. The lot-weighted model excels in scenarios with 
large lot sizes or high utilization costs, yielding higher optimal 
revenues. In contrast, the general model exhibits greater 
stability and robustness, requiring only minimal tuning C to 

sustain near-optimal performance when only 0Qβ is changed. 

These findings highlight a trade-off: the lot-weighted model 
offers superior revenue potential under specific constraints, 
whereas the general model provides broader parametric 
insensitivity. 

Our future research will focus on applying these two 
models, either individually or in combination, to diverse 
real-world scenarios to assist retailers maximize profits. 
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