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Abstract—This research investigates an inventory system
employing a fixed-order quantity policy for managing a
perishable product with deterministic shelf life over a finite
planning horizon, assuming no replenishment during the sales
period. The demand follows a non-homogeneous compound
Poisson distribution, where the intensity exhibits dual
dependence on both current inventory availability and an
unspecified temporal weight function while controlled by retail
price. Through the application of diffusion approximation of the
inventory level and incorporating intensity-price dependence,
we derive a practical approximation for the optimal weight
function that remains computationally efficient even for
substantial lot sizes. The case of leftovers’ salvage has been
considered. For two types of near-optimal weight functions the
expected revenues are obtained, and numerical examples of
their maximization with respect to an unknown constant are
presented.

I. INTRODUCTION AND PROBLEM STATEMENT

Contemporary  e-commerce platforms demonstrate
particular interest in dynamic pricing strategies, as
technological advancements have virtually eliminated menu
costs. This approach has gained significant traction in retail
grocery sectors through expiration date-based pricing
implementations; see [1].

Recent studies [2-3] have examined the ecological and
societal consequences of managing perishable goods,
highlighting how dynamic pricing affects both revenue
generation and product waste reduction. Empirical evidence
[4-5] further demonstrates that implementing dynamic
pricing strategies in retail settings can substantially enhance
profitability. Dynamic pricing practices are particularly
useful when demand is both price sensitive and stochastic.
The literature contains comprehensive reviews [6-11]
documenting thorough investigations into production and
inventory systems handling perishable goods.

Here, we present a generalization of the retail price control
models in stochastic environment proposed and studied in [12

—14]. These three papers deal with the products that need to

be sold before a certain point in time. It is assumed that
demand exhibits high price elasticity, demonstrating marked
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responsiveness to pricing variations.

In [12], a stochastic dynamic price control model is
proposed, which allows us, triggering purchases, to sell all the
perishable product at hand during the period almost surely.

In this paper, we derive the equation for the optimal weight
function, which maximizes the expected revenue, and
consider its approximate solution as a near-optimal weight
function. This near-optimal weight function almost surely
implies leftovers depending on the range of the unknown
constant it contains. Firstly, the core optimization objective
focuses on expected revenue maximization through the
constant considering nonzero salvage value. Secondly, we
modify the optimal weight function approximation so that the
price at the beginning of the sales period becomes close to the
base price and obtain the expected revenues in case of
possible leftovers. For both functions, the optimization task
can be solved only numerically. The corresponding numerical
examples are given. The sales process's stochastic properties
and associated expected revenues are analytically derived via
diffusion approximation of the inventory process.

Let us introduce the model’s assumptions and notations.
We consider a supply chain network comprising one vendor
and multiple buyers, the vendor is a monopolist and seeks to

maximize the revenue, ordering fixed lot O, per unit price d
and selling it within a fixed time period 7.

If leftovers happen, products are sold on the secondary
market at salvage value per unit s, s < d, or are disposed, in
this case, s < 0.

The demand follows a compound Poisson process with
price-dependent intensity A(c), where ¢ =c() denotes the

unit selling price. Individual order quantities are modeled as
i.i.d. continuous random variables with the first and second
moments a; and a; respectively. The system operates under a
no-replenishment policy throughout the planning horizon.

As evidenced by the results presented in [15], we assume
that the stock level process Q(-) is characterized by a

stochastic differential equation as follows:



dO(t) = —a,Mc(®))dt + \Ja,M(c(2))dw(t) ,
where w(-) is the Wiener process.

Let us consider the following model of the intensity of the
customers’ flow control through the dynamic price:

alk(c(t))=%, (D

where (p() is an unknown weight function, ¢€ [O,T]. We

will call control model (1) as a general one.

II. NEAR-OPTIMAL WEIGHT FUNCTION FOR A LARGE LOT
SIZE

A. Expectation and variance of the stock level process
Thus, the stock level follows the stochastic differential

equation:
/@ o)
+ a —T(p(t ; T)dw(t) . 2

The expectation and variance
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E{0()} =0(1) = O, exp{—y(/T)}, 3)

Var{0(1)} = a;—Qoexp{—\p(t/T)}(l —exp{-y(1/T)}). (4)
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where y(z) = I(p"(x)dx.
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B. The expected revenue and its maximization
We adapt linear the intensity-of-price dependence
c(t)—c,
Me) =1, 0, ©
CO

where ¢, is a stationary (basic) price corresponding stationary
intensity A, , and parameter A, >0 quantifies the
responsiveness of the demand intensity A(-) to deviations of
the relative price from its stationary level.

From (1) and (5) we get
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Let us formulate the optimization problem

1
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subject to Y(0)=0.

Following Euler-Lagrange equation, optimal function
y(-) satisfies
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where coefficient 4=a,0,/a, 1.

Coefficient 4>>1, because @, is usually large, so

neglecting the last term in (6), we get llf”—llf’z =0. It follows
that near-optimal weight function @(z) = C — z , where C is
a constant.

If C> 1, then the leftovers are possible. The expected stock
level at the end of the period Q(T) =0, (1-1/C).

Fig. 1 shows the plots of the optimal weight functions for
different values of coefficients 4 and C > 1. Black lines
represent the exact solutions, whereas red lines indicate the
approximate solutions. For all C values and 4 = 100 the exact
and approximate solutions are close to each other. The
difference between the solutions increases by the end of the
cycle.
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Figure 1. Optimal weight function @ (-) dependence on #/T = z for the

exact and approximate solutions.



Consider the case of leftovers, that is, C >1. Let the
salvage value per unit s=md, where coefficient —1<n <1
reflects the product’s deterioration throughout the period, like

as in [16]. The expected salvage value S, =ndQ, (%J

Then the expected revenue of general model for C> 1
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III. LoT WEIGHTED CONTROL MODEL

In this section, we examine the specified form of
price-dependent intensity.

aA(c(0)) =g§—(_t)t, (8)

where C > 0 is a constant, t < CT. We will refer to this model
as a lot-weighted one.

Then the stock level process is described by the following
stochastic differential equation:
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Below we consider probabilistic characteristics of the
stock level process and give the expression of the expected
revenue for C> 1.

A. Expectation and variance of the stock level process

Expectation and variance of Q(%)

E{0(1)}=0uz(0). Var{Q(1)} =22 0,80 (1= £(0).
where g(¢) :£1—5J ,t<CT.
Note that E{Q(T)} =0, (1-1/C)" for C>1.

B. Probability density function of the stock level process
Applying It6’s lemma to equation (9) yields:
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After averaging, we have
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From (10) we get
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where @) is an unknown function and parameter
B=2a/a,.

Using inverse Laplace transform we obtain the density
function
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where [, (-) is the first order modified Bessel function of the

first kind and O(-) represents the Dirac delta distribution.

This result provides some other characteristics of the sales
process.

C. Distribution of the selling period’s duration

Denote 7 the first occurrence time of the crossing of zero
level by O(-) subject to Q(0)=0,. That is, T denotes the

duration required to complete the sale of lot O, . The

cumulative distribution function of © is the multiplayer
before &(-) function in (11).

The cumulative distribution function of T is given by:

(12)
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The expected duration of the selling period
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where I' (,) is the upper incomplete gamma function.




D. The expected revenue and its optimization

Let us find the expected revenue for the lot-weighted
model in case of a large lot size.

Define ¢, the stationary (or basic) price that satisfies
equation aA(c,) =0, /T . Represent the deviations from the
stationary price by Ac(f) =c(t)—c, -

Employing the Taylor series expansion, we derive
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Let us find conditional expectation E{Q(¢)| O(¢) >0} .
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0, /T =a/\,, we can rewrite (13) as follows
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Tending C to one from above we get the same result as in
[12].
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IV. NUMERICAL ILLUSTRATION

The expected revenues (7) and (14) demonstrate concavity
with respect to C. We use simulations to validate the general
and lot-weighted models. The non-homogeneous Poisson
process is generated via thinning method, with 1,000
replications per configuration and simulation results are
reported as means across iterations. Fig.2 illustrates that the
theoretical weighted expected revenues align well with the
simulation results across varying parameters.

Under condition A,Tq, =Q,, the relative revenues of the

two models depend on three dimensionless system
parameters: Ay /A, PO, , and nd /¢, . Fig. 3 depicts the

numerical results for relative revenues dependence on for
general (black line) and lot-weighted (red line) models,
distribution of purchases is uniform,
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The results demonstrate that increasing A, /A, and BQ,

leads to significant revenue improvements and shifts in both
revenues and coefficients C required to achieve revenues’
maximum, as shown in the first three subplots. Notably, the
lot-weighted model exhibits greater robustness to C deviations,
particularly for negative salvage values.
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Figure 3. Relative revenues dependence on C.

Let us now investigate the impact of three dimensionless
system parameters on both the revenues and corresponding
optimal coefficients C for the models.

In Tab. 1 and Fig. 4, numerical results of the maximal
relative revenues calculation for the general model and the
lot-weighted one are presented under different sets of
dimensionless system parameters.

Both models attain similar peak revenues under baseline
conditions ( BQ, =1050, nd/c, =—0.6 ). The lot-weighted

model outperforms the general one in two scenarios: (1) when
the lot size is substantially increased (BQ, > 600), or (2) when
utilization cost is high (implied by md/c,=-0.6 ).
Three-dimensional modeling demonstrates the advantages and

disadvantages of the two models more effectively as shown in
Fig. 5.

Fig. 6 depicts the numerical results for optimal C values
with respect to variations of three dimensionless system
parameters.

In contrast to parameters A, /A, and nd /c,, parameter
BQO, exhibits an inverse influence on the two models —
increasing BQ, slightly reduces optimal C values for the

general model, while increases the value for the lot-weighted
model. The general model exhibits superior stability under
large lot-size conditions. Specifically, maintaining the
coefficient C slightly below 1.7 is sufficient to achieve
near-optimal revenue. This contrasts with the lot-weighted
model, which requires finer calibration of C to optimize the
inventory system’s performance.
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V. CONCLUSION

For large lot sizes, we describe the stock level process
driven by a compound Poisson demand with a customer flow
intensity proportional to the stock level and a time-dependent
weight function using a diffusion approximation. We get the
near-optimal weight function for large lot sizes in closed form
using a linear intensity-of-price dependence. This weight
function depends on an unknown constant. The modified,
lot-weighted function, also depending on a constant, is
presented to ensure more stable operation of the inventory
system. Optimization with respect to the constants under the
salvage values consideration can be done only numerically,
the revenues functions are concave.

The numerical analysis demonstrates that while both
models achieve comparable peak revenues under baseline
conditions, their performance diverges under parameters
variations. The lot-weighted model excels in scenarios with
large lot sizes or high utilization costs, yielding higher optimal
revenues. In contrast, the general model exhibits greater
stability and robustness, requiring only minimal tuning C to
sustain near-optimal performance when only BQ, is changed.

These findings highlight a trade-off: the lot-weighted model
offers superior revenue potential under specific constraints,
whereas the general model provides broader parametric
insensitivity.

Our future research will focus on applying these two
models, either individually or in combination, to diverse
real-world scenarios to assist retailers maximize profits.
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